ترغب بنشر مسار تعليمي؟ اضغط هنا

Planck early results. VI. The High Frequency Instrument data processing

232   0   0.0 ( 0 )
 نشر من قبل Fran\\c{c}ois Bouchet R.
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe the processing of the 336 billion raw data samples from the High Frequency Instrument (HFI) which we performed to produce six temperature maps from the first 295 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545 and 857 GHz with an angular resolution ranging from 9.9 to 4.4^2. The white noise level is around 1.5 {mu}K degree or less in the 3 main CMB channels (100--217GHz). The photometric accuracy is better than 2% at frequencies between 100 and 353 GHz and around 7% at the two highest frequencies. The maps created by the HFI Data Processing Centre reach our goals in terms of sensitivity, resolution, and photometric accuracy. They are already sufficiently accurate and well-characterised to allow scientific analyses which are presented in an accompanying series of early papers. At this stage, HFI data appears to be of high quality and we expect that with further refinements of the data processing we should be able to achieve, or exceed, the science goals of the Planck project.

قيم البحث

اقرأ أيضاً

We describe the processing of the 531 billion raw data samples from the High Frequency Instrument (hereafter HFI), which we performed to produce six temperature maps from the first 473 days of Planck-HFI survey data. These maps provide an accurate re ndition of the sky emission at 100, 143, 217, 353, 545, and 857 GHz with an angular resolution ranging from 9.7 to 4.6 arcmin. The detector noise per (effective) beam solid angle is respectively, 10, 6, 12 and 39 microKelvin in HFI four lowest frequency channel (100--353 GHz) and 13 and 14 kJy/sr for the 545 and 857 GHz channels. Using the 143 GHz channel as a reference, these two high frequency channels are intercalibrated within 5% and the 353 GHz relative calibration is at the percent level. The 100 and 217 GHz channels, which together with the 143 GHz channel determine the high-multipole part of the CMB power spectrum (50 < l <2500), are intercalibrated at better than 0.2 %.
We describe the processing of data from the Low Frequency Instrument (LFI) used in production of the Planck Early Release Compact Source Catalogue (ERCSC). In particular, we discuss the steps involved in reducing the data from telemetry packets to cl eaned, calibrated, time-ordered data (TOD) and frequency maps. Data are continuously calibrated using the modulation of the temperature of the cosmic microwave background radiation induced by the motion of the spacecraft. Noise properties are estimated from TOD from which the sky signal has been removed using a generalized least square map-making algorithm. Measured 1/f noise knee-frequencies range from 100mHz at 30GHz to a few tens of mHz at 70GHz. A destriping code (Madam) is employed to combine radiometric data and pointing information into sky maps, minimizing the variance of correlated noise. Noise covariance matrices required to compute statistical uncertainties on LFI and Planck products are also produced. Main beams are estimated down to the approx -10dB level using Jupiter transits, which are also used for geometrical calibration of the focal plane.
This paper presents the High Frequency Instrument (HFI) data processing procedures for the Planck 2018 release. Major improvements in mapmaking have been achieved since the previous 2015 release. They enabled the first significant measurement of the reionization optical depth parameter using HFI data. This paper presents an extensive analysis of systematic effects, including the use of simulations to facilitate their removal and characterize the residuals. The polarized data, which presented a number of known problems in the 2015 Planck release, are very significantly improved. Calibration, based on the CMB dipole, is now extremely accurate and in the frequency range 100 to 353 GHz reduces intensity-to-polarization leakage caused by calibration mismatch. The Solar dipole direction has been determined in the three lowest HFI frequency channels to within one arc minute, and its amplitude has an absolute uncertainty smaller than $0.35mu$K, an accuracy of order $10^{-4}$. This is a major legacy from the HFI for future CMB experiments. The removal of bandpass leakage has been improved by extracting the bandpass-mismatch coefficients for each detector as part of the mapmaking process; these values in turn improve the intensity maps. This is a major change in the philosophy of frequency maps, which are now computed from single detector data, all adjusted to the same average bandpass response for the main foregrounds. Simulations reproduce very well the relative gain calibration of detectors, as well as drifts within a frequency induced by the residuals of the main systematic effect. Using these simulations, we measure and correct the small frequency calibration bias induced by this systematic effect at the $10^{-4}$ level. There is no detectable sign of a residual calibration bias between the first and second acoustic peaks in the CMB channels, at the $10^{-3}$ level.
This paper describes the processing applied to the Planck High Frequency Instrument (HFI) cleaned, time-ordered information to produce photometrically calibrated maps in temperature and (for the first time) in polarization. The data from the entire 2 .5 year HFI mission include almost five independent full-sky surveys. HFI observes the sky over a broad range of frequencies, from 100 to 857 GHz. To obtain the best accuracy on the calibration over such a large range, two different photometric calibration schemes have been used. The 545 and 857 GHz data are calibrated using models of planetary atmospheric emission. The lower frequencies (from 100 to 353 GHz) are calibrated using the time-variable cosmological microwave background dipole, which we call the orbital dipole. This source of calibration only depends on the satellite velocity with respect to the solar system. Using a CMB temperature of 2.7255 +/- 0.0006 K, it permits an independent measurement of the amplitude of the CMB solar dipole (3364.3 +/- 1.5 mu K) which is approximatively 1sigma higher than the WMAP measurement with a direction that is consistent between both experiments. We describe the pipeline used to produce the maps of intensity and linear polarization from the HFI timelines, and the scheme used to set the zero level of the maps a posteriori. We also summarize the noise characteristics of the HFI maps in the 2015 Planck data release and present some null tests to assess their quality. Finally, we discuss the major systematic effects and in particular the leakage induced by flux mismatch between the detectors that leads to spurious polarization signal.
We present a final description of the data-processing pipeline for the Planck, Low Frequency Instrument (LFI), implemented for the 2018 data release. Several improvements have been made with respect to the previous release, especially in the calibrat ion process and in the correction of instrumental features such as the effects of nonlinearity in the response of the analogue-to-digital converters. We provide a brief pedagogical introduction to the complete pipeline, as well as a detailed description of the important changes implemented. Self-consistency of the pipeline is demonstrated using dedicated simulations and null tests. We present the final version of the LFI full sky maps at 30, 44, and 70 GHz, both in temperature and polarization, together with a refined estimate of the Solar dipole and a final assessment of the main LFI instrumental parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا