ترغب بنشر مسار تعليمي؟ اضغط هنا

Winds, Clumps, and Interacting Cosmic Rays in M82

282   0   0.0 ( 0 )
 نشر من قبل Tova Yoast-Hull
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct a family of models for the evolution of energetic particles in the starburst galaxy M82 and compare them to observations to test the calorimeter assumption that all cosmic ray energy is radiated in the starburst region. Assuming constant cosmic ray acceleration efficiency with Milky Way parameters, we calculate the cosmic-ray proton and primary and secondary electron/positron populations as a function of energy. Cosmic rays are injected with Galactic energy distributions and electron-to-proton ratio via type II supernovae at the observed rate of 0.07/yr. From the cosmic ray spectra, we predict the radio synchrotron and gamma-ray spectra. To more accurately model the radio spectrum, we incorporate a multiphase interstellar medium in the starburst region of M82. Our model interstellar medium is highly fragmented with compact dense molecular clouds and dense photoionized gas, both embedded in a hot, low density medium in overall pressure equilibrium. The spectra predicted by this one-zone model are compared to the observed radio and gamma-ray spectra of M82. Chi-squared tests are used with radio and gamma-ray observations and a range of model predictions to find the best-fit parameters. The best-fit model yields constraints on key parameters in the starburst zone of M82, including a magnetic field strength of ~250 mu G and a wind advection speed in the range of 300-700 km/s. We find that M82 is a good electron calorimeter but not an ideal cosmic-ray proton calorimeter and discuss the implications of our results for the astrophysics of the far infrared-radio correlation in starburst galaxies.

قيم البحث

اقرأ أيضاً

The galaxies M82, NGC 253, NGC 1068, and NGC 4945 have been detected in gamma-rays by Fermi. Previously, we developed and tested a model for cosmic ray interactions in the starburst galaxy M82. Now, we aim to explore the differences between starburst and active galactic nuclei (AGN) environments by applying our self-consistent model to the starburst galaxy NGC 253 and the Seyfert galaxy NGC 1068. Assuming constant cosmic-ray acceleration efficiency by supernova remnants with Milky-Way parameters, we calculate the cosmic-ray proton and primary and secondary electron/positron populations, predict the radio and gamma-ray spectra, and compare with published measurements. We find that our models easily fits the observed gamma-ray spectrum for NGC 253 while constraining the cosmic ray source spectral index and acceleration efficiency. However, we encountered difficultly modeling the observed radio data and constraining the speed of the galactic wind and the magnetic field strength, unless the gas mass is less than currently preferred values. Additionally, our starburst model consistently underestimates the observed gamma-ray flux and overestimates the radio flux for NGC 1068; these issues would be resolved if the AGN is the primary source of gamma-rays. We discuss the implications of these results and make predictions for the neutrino fluxes for both galaxies.
Some part of the relic Dark Matter is distributed in small-scale clumps which survived structure formation in inflation cosmological scenario. The annihilation of DM inside these clumps is a strong source of stable charged particles which can have a substantial density near the clump core. The streaming of the annihilation products from the clump can enhance irregularities in the galactic magnetic field. This can produce small scale variations in diffusion coefficient affecting propagation of Cosmic Rays.
One prediction of particle acceleration in the supernova remnants in the magnetic wind of exploding Wolf Rayet and Red Super Giant stars is that the final spectrum is a composition of a spectrum $E^{-7/3}$ and a polar cap component of $E^{-2}$ at the source. This polar cap component contributes to the total energy content with only a few percent, but dominates the spectrum at higher energy. The sum of both components gives spectra which curve upwards. The upturn was predicted to occur always at the same rigidity. An additional component of cosmic rays from acceleration by supernovae exploding into the Inter-Stellar Medium (ISM) adds another component for Hydrogen and for Helium. After transport the predicted spectra $J(E)$ for the wind-SN cosmic rays are $E^{-8/3}$ and $E^{-7/3}$; the sum leads to an upturn from the steeper spectrum. An upturn has now been seen. Here, we test the observations against the predictions, and show that the observed properties are consistent with the predictions. Hydrogen can be shown to also have a noticeable wind-SN-component. The observation of the upturn in the heavy element spectra being compatible with the same rigidity for all heavy elements supports the magneto-rotational mechanism for these supernovae. This interpretation predicts the observed upturn to continue to curve upwards and approach the $E^{-7/3}$ spectrum. If confirmed, this would strengthen the case that supernovae of very massive stars with magnetic winds are important sources of Galactic cosmic rays.
129 - C.D. Dermer , G. Powale 2012
Context: Cosmic rays are thought to be accelerated at supernova remnant (SNR) shocks, but conclusive evidence is lacking. Aims: New data from ground-based gamma-ray telescopes and the Large Area Telescope on the Fermi Gamma-ray Space Telescope are us ed to test this hypothesis. A simple model for gamma-ray production efficiency is compared with measured gamma-ray luminosities of SNRs, and the GeV to TeV fluxes ratios of SNRs are examined for correlations with SNR ages. Methods: The supernova explosion is modeled as an expanding spherical shell of material that sweeps up matter from the surrounding interstellar medium (ISM). The accumulated kinetic energy of the shell, which provides the energy available for nonthermal particle acceleration, changes when matter is swept up from the ISM and the SNR shell decelerates. A fraction of this energy is assumed to be converted into the energy of cosmic-ray electrons or protons. Three different particle radiation processes---nuclear pion-production interactions, nonthermal electron bremsstrahlung, and Compton scattering---are considered. Results: The efficiencies for gamma-ray production by these three processes are compared with gamma-ray luminosities of SNRs. Our results suggest that SNRs become less gamma-ray luminous at >~ 10^4 yr, and are consistent with the hypothesis that supernova remnants accelerate cosmic rays with an efficiency of ~10% for the dissipation of kinetic energy into nonthermal cosmic rays. Weak evidence for an increasing GeV to TeV flux ratio with SNR age is found.
367 - Ya. N. Istomin 2014
From the analysis of the flux of high energy particles, $E>3cdot 10^{18}eV$, it is shown that the distribution of the power density of extragalactic rays over energy is of the power law, ${bar q}(E)propto E^{-2.7}$, with the same index of $2.7$ that has the distribution of Galactic cosmic rays before so called knee, $E<3cdot 10^{15}eV$. However, the average power of extragalactic sources, which is of ${cal E}simeq 10^{43}erg ,s^{-1}$, at least two orders exceeds the power emitted by the Galaxy in cosmic rays, assuming that the density of galaxies is estimated as $N_gsimeq 1 Mpc^{-3}$. Considering that such power can be provided by relativistic jets from active galactic nuclei with the power ${cal E}simeq 10^{45} - 10^{46} erg , s^{-1}$, we estimate the density of extragalactic sources of cosmic rays as $N_gsimeq 10^{-2}-10^{-3}, Mpc^{-3}$. Assuming the same nature of Galactic and extragalactic rays, we conclude that the Galactic rays were produced by a relativistic jet emitted from the Galactic center during the period of its activity in the past. The remnants of a bipolar jet are now observed in the form of bubbles of relativistic gas above and below the Galactic plane. The break, observed in the spectrum of Galactic rays (knee), is explained by fast escape of energetic particle, $E>3cdot 10^{15}eV$, from the Galaxy because of the dependence of the coefficient of diffusion of cosmic rays on energy, $Dpropto E^{0.7}$. The obtained index of the density distribution of particles over energy, $N(E)propto E^{-2.7-0.7/2}=E^{-3.05}$, for $E>3cdot 10^{15}eV$ agrees well with the observed one, $N(E)propto E^{-3.1}$. Estimated time of termination of the jet in the Galaxy is $4.2cdot 10^{4}$ years ago.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا