ﻻ يوجد ملخص باللغة العربية
The galaxies M82, NGC 253, NGC 1068, and NGC 4945 have been detected in gamma-rays by Fermi. Previously, we developed and tested a model for cosmic ray interactions in the starburst galaxy M82. Now, we aim to explore the differences between starburst and active galactic nuclei (AGN) environments by applying our self-consistent model to the starburst galaxy NGC 253 and the Seyfert galaxy NGC 1068. Assuming constant cosmic-ray acceleration efficiency by supernova remnants with Milky-Way parameters, we calculate the cosmic-ray proton and primary and secondary electron/positron populations, predict the radio and gamma-ray spectra, and compare with published measurements. We find that our models easily fits the observed gamma-ray spectrum for NGC 253 while constraining the cosmic ray source spectral index and acceleration efficiency. However, we encountered difficultly modeling the observed radio data and constraining the speed of the galactic wind and the magnetic field strength, unless the gas mass is less than currently preferred values. Additionally, our starburst model consistently underestimates the observed gamma-ray flux and overestimates the radio flux for NGC 1068; these issues would be resolved if the AGN is the primary source of gamma-rays. We discuss the implications of these results and make predictions for the neutrino fluxes for both galaxies.
IceCube has observed an excess of neutrino events over expectations from the isotropic background from the direction of NGC 1068. The excess is inconsistent with background expectations at the level of $2.9sigma$ after accounting for statistical tria
The detection of high-energy astrophysical neutrinos and ultra-high-energy cosmic rays (UHECRs) provides a new way to explore sources of cosmic rays. One of the highest energy neutrino events detected by IceCube, tagged as IC35, is close to the UHECR
Radio halos require the coexistence of extra-planar cosmic rays and magnetic fields. Because cosmic rays are injected and accelerated by processes related to star formation in the disk, they have to be transported from the disk into the halo. A verti
Spectra of the archetypal Type II Seyfert galaxy NGC 1068 in a narrow wavelength interval near 3.7 microns have revealed a weak absorption feature due to two lines of the molecular ion H3+. The observed wavelength of the feature corresponds to veloci
We investigate the production of ultra-high-energy cosmic ray (UHECR) in relativistic jets from low-luminosity active galactic nuclei (LLAGN). We start by proposing a model for the UHECR contribution from the black holes (BHs) in LLAGN, which present