ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-organized Archimedean Spiral Pattern: Regular Bundling of Fullerene through Solvent Evaporation

47   0   0.0 ( 0 )
 نشر من قبل Yongjun Chen
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the spontaneous generation of an Archimedean spiral pattern of fullerene via the evaporation of solvent. The self-organized spiral pattern exhibited equi-spacing on the order of micrometer between neighboring stripes. The characteristics of the spirals, such as the spacing between stripes, the number of stripes and the band width of stripes, could be controlled by tuning the thickness of the liquid bridge and the concentration of solution. The mechanism of pattern formation is interpreted in terms of a specific traveling wave on the liquid-solid interface accompanied by a stick-slip process of the contact line.

قيم البحث

اقرأ أيضاً

Due to their physical properties and potential applications in energy conversion and storage, transition metal dichalcogenides (TMDs) have garnered substantial interest in recent years. Amongst this class of materials, TMDs based on molybdenum, tungs ten, sulfur and selenium are particularly attractive due to their semiconducting properties and the availability of bottom-up synthesis techniques. Here we report a method which yields high quality crystals of transition metal diselenide and ditelluride compounds (PtTe2, PdTe2, NiTe2, TaTe2, TiTe2, RuTe2, PtSe2, PdSe2, NbSe2, TiSe2, VSe2, ReSe2) from their solid solutions, via vapor deposition from a metal-saturated chalcogen melt. Additionally, we show the synthesis of rare-earth metal poly-chalcogenides and NbS2 crystals using the aforementioned process. Most of the obtained crystals have a layered CdI2 structure. We have investigated the physical properties of selected crystals and compared them to state-of-the-art findings reported in the literature. Remarkably, the charge density wave transition in 1T-TiSe2 and 2H-NbSe2 crystals is well-defined at TCDW ~ 200 K and ~ 33 K, respectively. Angle-resolved photoelectron spectroscopy and electron diffraction are used to directly access the electronic and crystal structures of PtTe2 single crystals, and yield state-of-the-art measurements.
We investigate the linear viscoelasticity of polymer gels produced by the dispersion of gluten proteins in water:ethanol binary mixtures with various ethanol contents, from pure water to 60% v/v ethanol. We show that the complex viscoelasticity of th e gels exhibits a time/solvent composition superposition principle, demonstrating the self-similarity of the gels produced in different binary solvents. All gels can be regarded as near critical gels with characteristic rheological parameters, elastic plateau and characteristic relaxation time, which are related one to another, as a consequence of self-similarity, and span several orders of magnitude when changing the solvent composition. Thanks to calorimetry and neutron scattering experiments, we evidencea co-solvency effect with a better solvation of the complex polymer-like chains of the gluten proteins as the amount of ethanol increases. Overall the gel viscoelasticity can be accounted for by a unique characteristic length characterizing the crosslink density of the supramolecular network, which is solvent composition-dependent. On a molecular level, these findings could be interpreted as a transition of the supramolecular interactions, mainly H-bonds, from intra- to interchains, which would be facilitated by the disruption of hydrophobic interactions by ethanol molecules. This work provides new insight for tailoring the gelation process of complex polymer gels.
65 - H. J. Zhao , V. R. Misko , 2013
Non-equilibrium self-organized patterns formed by particles interacting through competing range interaction are driven over a substrate by an external force. We show that, with increasing driving force, the pre-existed static patterns evolve into dyn amic patterns either via disordered phase or depinned patterns, or via the formation of non-equilibrium stripes. Strikingly, the stripes are formed either in the direction of the driving force or in the transverse direction, depending on the pinning strength. The revealed dynamical patterns are summarized in a dynamical phase diagram.
Self-organized criticality is characterized by power law correlations in the non-equilibrium steady state of externally driven systems. A dynamical system proposed here self-organizes itself to a critical state with no characteristic size at ``dynami cal equilibrium. The system is a random solid in contact with an aqueous solution and the dynamics is the chemical reaction of corrosion or dissolution of the solid in the solution. The initial difference in chemical potential at the solid-liquid interface provides the driving force. During time evolution, the system undergoes two transitions, roughening and anti-percolation. Finally, the system evolves to a dynamical equilibrium state characterized by constant chemical potential and average cluster size. The cluster size distribution exhibits power law at the final equilibrium state.
We explore the effect of an attractive interaction between parallel-aligned polymers, which are perpendicularly grafted on a substrate. Such an attractive interaction could be due to, e.g., reversible cross-links. The competition between permanent gr afting favoring a homogeneous state of the polymer brush and the attraction, which tends to induce in-plane collapse of the aligned polymers, gives rise to an instability of the homogeneous phase to a bundled state. In this latter state the in-plane translational symmetry is spontaneously broken and the density is modulated with a finite wavelength, which is set by the length scale of transverse fluctuations of the grafted polymers. We analyze the instability for two models of aligned polymers: directed polymers with a line tension and weakly bending chains with a bending stiffness.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا