ﻻ يوجد ملخص باللغة العربية
The topological physics of quantum Hall states is efficiently encoded in purely topological quantum field theories of the Chern-Simons type. The reliable inclusion of low-energy dynamical properties in a continuum description however typically requires proximity to a quantum critical point. We construct a field theory that describes the quantum transition from an isotropic to a nematic Laughlin liquid. The soft mode associated with this transition approached from the isotropic side is identified as the familiar intra-Landau level Girvin-MacDonald-Platzman mode. We obtain z=2 dynamic scaling at the critical point and a description of Goldstone and defect physics on the nematic side. Despite the very different physical motivation, our field theory is essentially identical to a recent geometric field theory for a Laughlin liquid proposed by Haldane.
At small momenta, the Girvin-MacDonald-Platzman (GMP) mode in the fractional quantum Hall (FQH) effect can be identified with gapped nematic fluctuations in the isotropic FQH liquid. This correspondence would be exact as the GMP mode softens upon app
In spite of its ubiquity in strongly correlated systems, the competition of paired and nematic ground states remains poorly understood. Recently such a competition was reported in the two-dimensional electron gas at filling factor $ u=5/2$. At this f
We present a theory of the isotropic-nematic quantum phase transition in the composite Fermi liquid arising in half-filled Landau levels. We show that the quantum phase transition between the isotropic and the nematic phase is triggered by an attract
We construct model wavefunctions for the collective modes of fractional quantum Hall systems. The wavefunctions are expressed in terms of symmetric polynomials characterized by a root partition and a squeezed basis, and show excellent agreement with
The prospect of a Dirac half metal, a material which is characterized by a bandstructure with a gap in one spin channel but a Dirac cone in the other, is of both fundamental interest and a natural candidate for use in spin-polarized current applicati