ﻻ يوجد ملخص باللغة العربية
The known families of difference sets can be subdivided into three classes: difference sets with Singer parameters, cyclotomic difference sets, and difference sets with gcd$(v,n)>1$. It is remarkable that all the known difference sets with gcd$(v,n)>1$ have the so-called character divisibility property. In 1997, Jungnickel and Schmidt posed the problem of constructing difference sets with gcd$(v,n)>1$ that do not satisfy this property. In an attempt to attack this problem, we use difference sets with three nontrivial character values as candidates, and get some necessary conditions.
For $ellgeq 2$ and $hin mathbb{Z}[x_1,dots,x_{ell}]$ of degree $kgeq 2$, we show that every set $Asubseteq {1,2,dots,N}$ lacking nonzero differences in $h(mathbb{Z}^{ell})$ satisfies $|A|ll_h Ne^{-c(log N)^{mu}}$, where $c=c(h)>0$, $mu=[(k-1)^2+1]^{-
We show that, in contrast to the integers setting, almost all even order abelian groups $G$ have exponentially fewer maximal sum-free sets than $2^{mu(G)/2}$, where $mu(G)$ denotes the size of a largest sum-free set in $G$. This confirms a conjecture of Balogh, Liu, Sharifzadeh and Treglown.
Let $(G, +)$ be an abelian group. In 2004, Eliahou and Kervaire found an explicit formula for the smallest possible cardinality of the sumset $A+A$, where $A subseteq G$ has fixed cardinality $r$. We consider instead the smallest possible cardinality
We revisit the old idea of constructing difference sets from cyclotomic classes. Two constructions of skew Hadamard difference sets are given in the additive groups of finite fields using unions of cyclotomic classes of order $N=2p_1^m$, where $p_1$
We revisit the problem of constructing Menon-Hadamard difference sets. In 1997, Wilson and Xiang gave a general framework for constructing Menon-Hadamard difference sets by using a combination of a spread and four projective sets of type Q in ${mathr