ترغب بنشر مسار تعليمي؟ اضغط هنا

Difference Sets with Few Character Values

181   0   0.0 ( 0 )
 نشر من قبل Sihuang Hu
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The known families of difference sets can be subdivided into three classes: difference sets with Singer parameters, cyclotomic difference sets, and difference sets with gcd$(v,n)>1$. It is remarkable that all the known difference sets with gcd$(v,n)>1$ have the so-called character divisibility property. In 1997, Jungnickel and Schmidt posed the problem of constructing difference sets with gcd$(v,n)>1$ that do not satisfy this property. In an attempt to attack this problem, we use difference sets with three nontrivial character values as candidates, and get some necessary conditions.



قيم البحث

اقرأ أيضاً

69 - John R. Doyle , Alex Rice 2020
For $ellgeq 2$ and $hin mathbb{Z}[x_1,dots,x_{ell}]$ of degree $kgeq 2$, we show that every set $Asubseteq {1,2,dots,N}$ lacking nonzero differences in $h(mathbb{Z}^{ell})$ satisfies $|A|ll_h Ne^{-c(log N)^{mu}}$, where $c=c(h)>0$, $mu=[(k-1)^2+1]^{- 1}$ if $ell=2$, and $mu=1/2$ if $ellgeq 3$, provided $h(mathbb{Z}^{ell})$ contains a multiple of every natural number and $h$ satisfies certain nonsingularity conditions. We also explore these conditions in detail, drawing on a variety of tools from algebraic geometry.
We show that, in contrast to the integers setting, almost all even order abelian groups $G$ have exponentially fewer maximal sum-free sets than $2^{mu(G)/2}$, where $mu(G)$ denotes the size of a largest sum-free set in $G$. This confirms a conjecture of Balogh, Liu, Sharifzadeh and Treglown.
83 - Mitchell Lee 2015
Let $(G, +)$ be an abelian group. In 2004, Eliahou and Kervaire found an explicit formula for the smallest possible cardinality of the sumset $A+A$, where $A subseteq G$ has fixed cardinality $r$. We consider instead the smallest possible cardinality of the difference set $A-A$, which is always greater than or equal to the smallest possible cardinality of $A+A$ and can be strictly greater. We conjecture a formula for this quantity and prove the conjecture in the case that $G$ is a cyclic group or a vector space over a finite field. This resolves a conjecture of Bajnok and Matzke on signed sumsets.
122 - Tao Feng , Qing Xiang 2011
We revisit the old idea of constructing difference sets from cyclotomic classes. Two constructions of skew Hadamard difference sets are given in the additive groups of finite fields using unions of cyclotomic classes of order $N=2p_1^m$, where $p_1$ is a prime and $m$ a positive integer. Our main tools are index 2 Gauss sums, instead of cyclotomic numbers.
191 - Koji Momihara , Qing Xiang 2019
We revisit the problem of constructing Menon-Hadamard difference sets. In 1997, Wilson and Xiang gave a general framework for constructing Menon-Hadamard difference sets by using a combination of a spread and four projective sets of type Q in ${mathr m{PG}}(3,q)$. They also found examples of suitable spreads and projective sets of type Q for $q=5,13,17$. Subsequently, Chen (1997) succeeded in finding a spread and four projective sets of type Q in ${mathrm{PG}}(3,q)$ satisfying the conditions in the Wilson-Xiang construction for all odd prime powers $q$. Thus, he showed that there exists a Menon-Hadamard difference set of order $4q^4$ for all odd prime powers $q$. However, the projective sets of type Q found by Chen have automorphisms different from those of the examples constructed by Wilson and Xiang. In this paper, we first generalize Chens construction of projective sets of type Q by using `semi-primitive cyclotomic classes. This demonstrates that the construction of projective sets of type Q satisfying the conditions in the Wilson-Xiang construction is much more flexible than originally thought. Secondly, we give a new construction of spreads and projective sets of type Q in ${mathrm{PG}}(3,q)$ for all odd prime powers $q$, which generalizes the examples found by Wilson and Xiang. This solves a problem left open in Section 5 of the Wilson-Xiang paper from 1997.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا