ترغب بنشر مسار تعليمي؟ اضغط هنا

Isochronicity Correction in the CR Storage Ring

95   0   0.0 ( 0 )
 نشر من قبل Helmut Weick
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A challenge for nuclear physics is to measure masses of exotic nuclei up to the limits of nuclear existence which are characterized by low production cross sections and short half-lives. The large acceptance Collector Ring (CR) at FAIR tuned in the isochronous ion-optical mode offers unique possibilities for measuring short-lived and very exotic nuclides. However, in a ring designed for maximal acceptance, many factors limit the resolution. One point is a limit in time resolution inversely proportional to the transverse emittance. But most of the time aberrations can be corrected and others become small for large number of turns. We show the relations of the time correction to the corresponding transverse focusing and that the main correction for large emittance corresponds directly to the chromaticity correction for transverse focusing of the beam. With the help of Monte-Carlo simulations for the full acceptance we demonstrate how to correct the revolution times so that in principle resolutions of dm/m=1E-6 can be achieved. In these calculations the influence of magnet inhomogeneities and extended fringe fields are considered and a calibration scheme also for ions with different mass-to-charge ratio is presented.



قيم البحث

اقرأ أيضاً

In this paper, we demonstrate the connection between a magnetic storage ring with additional sextupole fields set so that the x and y chromaticities vanish and the maximizing of the lifetime of in-plane polarization (IPP) for a 0.97-GeV/c deuteron be am. The IPP magnitude was measured by continuously monitoring the down-up scattering asymmetry (sensitive to sideways polarization) in an in-beam, carbon-target polarimeter and unfolding the precession of the IPP due to the magnetic anomaly of the deuteron. The optimum operating conditions for a long IPP lifetime were made by scanning the field of the storage ring sextupole magnet families while observing the rate of IPP loss during storage of the beam. The beam was bunched and electron cooled. The IPP losses appear to arise from the change of the orbit circumference, and consequently the particle speed and spin tune, due to the transverse betatron oscillations of individual particles in the beam. The effects of these changes are canceled by an appropriate sextupole field setting.
This project exploits charged particles confined as a storage ring beam (proton, deuteron, possibly $^3$He) to search for an intrinsic electric dipole moment (EDM, $vec d$) aligned along the particle spin axis. Statistical sensitivities can approach $10^{-29}$~e$cdot$cm. The challenge will be to reduce systematic errors to similar levels. The ring will be adjusted to preserve the spin polarization, initially parallel to the particle velocity, for times in excess of 15 minutes. Large radial electric fields, acting through the EDM, will rotate the polarization ($vec d timesvec E$). The slow rise in the vertical polarization component, detected through scattering from a target, signals the EDM. The project strategy is outlined. It foresees a step-wise plan, starting with ongoing COSY activities that demonstrate technical feasibility. Achievements to date include reduced polarization measurement errors, long horizontal-plane polarization lifetimes, and control of the polarization direction through feedback from the scattering measurements. The project continues with a proof-of-capability measurement (precursor experiment; first direct deuteron EDM measurement), an intermediate prototype ring (proof-of-principle; demonstrator for key technologies), and finally the high precision electric-field storage ring.
We explore the possibility of operating a SASE FEL with a Storage Ring. We use a semi-analytical model to obtain the evolution inside the undulator by taking into account the interplay on the laser dynamics due to the induced energy spread and to the radiation damping. We obtain the Renieris limit for the stationary output power and discuss the possibility of including in our model the effect of the beam instabilities.
144 - R. Gebel , V. Hejny , A. Kacharava 2021
The unique global feature of COSY is its ability to accelerate, store and manipulate polarized proton and deuteron beams. In the recent past, these beams have been used primarily for precision measurements, in particular in connection with the study of charged particle EDMs (Electric Dipole Moment) in storage rings. The role of COSY as a R&D facility and for initial (static and oscillating) EDM measurements can hardly be overestimated. Unfortunately, as a consequence of the strategic decisions of Forschungszentrum Julich and the subsequent TransFAIR agreement between FZJ and GSI Darmstadt, it is currently planned to stop the operation of COSY by the end of 2024. The various groups working with polarized beams at COSY felt it important to collect information on essential measurements to be performed until the termination of machine operation. These experiments, briefly described in this document along with an estimate of the beam time required, serve as pathfinder investigations toward an EDM storage ring and Spin for FAIR.
145 - Dmitry Teytelman 2019
This paper presents a conceptual approach to phase modulation of the cavity field in storage ring RF systems. An implementation of the concept on Dimtel low-level RF controllers is also presented. The method is illustrated with the test results from a cavity simulator, as well as an electron storage ring KARA.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا