ﻻ يوجد ملخص باللغة العربية
A challenge for nuclear physics is to measure masses of exotic nuclei up to the limits of nuclear existence which are characterized by low production cross sections and short half-lives. The large acceptance Collector Ring (CR) at FAIR tuned in the isochronous ion-optical mode offers unique possibilities for measuring short-lived and very exotic nuclides. However, in a ring designed for maximal acceptance, many factors limit the resolution. One point is a limit in time resolution inversely proportional to the transverse emittance. But most of the time aberrations can be corrected and others become small for large number of turns. We show the relations of the time correction to the corresponding transverse focusing and that the main correction for large emittance corresponds directly to the chromaticity correction for transverse focusing of the beam. With the help of Monte-Carlo simulations for the full acceptance we demonstrate how to correct the revolution times so that in principle resolutions of dm/m=1E-6 can be achieved. In these calculations the influence of magnet inhomogeneities and extended fringe fields are considered and a calibration scheme also for ions with different mass-to-charge ratio is presented.
In this paper, we demonstrate the connection between a magnetic storage ring with additional sextupole fields set so that the x and y chromaticities vanish and the maximizing of the lifetime of in-plane polarization (IPP) for a 0.97-GeV/c deuteron be
This project exploits charged particles confined as a storage ring beam (proton, deuteron, possibly $^3$He) to search for an intrinsic electric dipole moment (EDM, $vec d$) aligned along the particle spin axis. Statistical sensitivities can approach
We explore the possibility of operating a SASE FEL with a Storage Ring. We use a semi-analytical model to obtain the evolution inside the undulator by taking into account the interplay on the laser dynamics due to the induced energy spread and to the
The unique global feature of COSY is its ability to accelerate, store and manipulate polarized proton and deuteron beams. In the recent past, these beams have been used primarily for precision measurements, in particular in connection with the study
This paper presents a conceptual approach to phase modulation of the cavity field in storage ring RF systems. An implementation of the concept on Dimtel low-level RF controllers is also presented. The method is illustrated with the test results from