ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Asymptotic Output Statistics of Random Binning and Its Applications

123   0   0.0 ( 0 )
 نشر من قبل Mohammad Hossein Yassaee
 تاريخ النشر 2013
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we develop a finite blocklength version of the Output Statistics of Random Binning (OSRB) framework. The framework is shown to be optimal in the point-to-point case. New second order regions for broadcast channel and wiretap channel with strong secrecy criterion are derived.



قيم البحث

اقرأ أيضاً

This paper introduces a new and ubiquitous framework for establishing achievability results in emph{network information theory} (NIT) problems. The framework uses random binning arguments and is based on a duality between channel and source coding pr oblems. {Further,} the framework uses pmf approximation arguments instead of counting and typicality. This allows for proving coordination and emph{strong} secrecy problems where certain statistical conditions on the distribution of random variables need to be satisfied. These statistical conditions include independence between messages and eavesdroppers observations in secrecy problems and closeness to a certain distribution (usually, i.i.d. distribution) in coordination problems. One important feature of the framework is to enable one {to} add an eavesdropper and obtain a result on the secrecy rates for free. We make a case for generality of the framework by studying examples in the variety of settings containing channel coding, lossy source coding, joint source-channel coding, coordination, strong secrecy, feedback and relaying. In particular, by investigating the framework for the lossy source coding problem over broadcast channel, it is shown that the new framework provides a simple alternative scheme to emph{hybrid} coding scheme. Also, new results on secrecy rate region (under strong secrecy criterion) of wiretap broadcast channel and wiretap relay channel are derived. In a set of accompanied papers, we have shown the usefulness of the framework to establish achievability results for coordination problems including interactive channel simulation, coordination via relay and channel simulation via another channel.
Recently, it has been shown that incoherence is an unrealistic assumption for compressed sensing when applied to many inverse problems. Instead, the key property that permits efficient recovery in such problems is so-called local incoherence. Similar ly, the standard notion of sparsity is also inadequate for many real world problems. In particular, in many applications, the optimal sampling strategy depends on asymptotic incoherence and the signal sparsity structure. The purpose of this paper is to study asymptotic incoherence and its implications towards the design of optimal sampling strategies and efficient sparsity bases. It is determined how fast asymptotic incoherence can decay in general for isometries. Furthermore it is shown that Fourier sampling and wavelet sparsity, whilst globally coherent, yield optimal asymptotic incoherence as a power law up to a constant factor. Sharp bounds on the asymptotic incoherence for Fourier sampling with polynomial bases are also provided. A numerical experiment is also presented to demonstrate the role of asymptotic incoherence in finding good subsampling strategies.
We study a hypothesis testing problem in which data is compressed distributively and sent to a detector that seeks to decide between two possible distributions for the data. The aim is to characterize all achievable encoding rates and exponents of th e type 2 error probability when the type 1 error probability is at most a fixed value. For related problems in distributed source coding, schemes based on random binning perform well and often optimal. For distributed hypothesis testing, however, the use of binning is hindered by the fact that the overall error probability may be dominated by errors in binning process. We show that despite this complication, binning is optimal for a class of problems in which the goal is to test against conditional independence. We then use this optimality result to give an outer bound for a more general class of instances of the problem.
The problem of verifying whether a multi-component system has anomalies or not is addressed. Each component can be probed over time in a data-driven manner to obtain noisy observations that indicate whether the selected component is anomalous or not. The aim is to minimize the probability of incorrectly declaring the system to be free of anomalies while ensuring that the probability of correctly declaring it to be safe is sufficiently large. This problem is modeled as an active hypothesis testing problem in the Neyman-Pearson setting. Component-selection and inference strategies are designed and analyzed in the non-asymptotic regime. For a specific class of homogeneous problems, stronger (with respect to prior work) non-asymptotic converse and achievability bounds are provided.
This paper is focuses on the computation of the positive moments of one-side correlated random Gram matrices. Closed-form expressions for the moments can be obtained easily, but numerical evaluation thereof is prone to numerical stability, especially in high-dimensional settings. This letter provides a numerically stable method that efficiently computes the positive moments in closed-form. The developed expressions are more accurate and can lead to higher accuracy levels when fed to moment based-approaches. As an application, we show how the obtained moments can be used to approximate the marginal distribution of the eigenvalues of random Gram matrices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا