ترغب بنشر مسار تعليمي؟ اضغط هنا

Microscopic Mechanism of Stereochemically Active Lone Pair Studied from Orbital Selective External Potential Calculation

98   0   0.0 ( 0 )
 نشر من قبل Xiangang Wan
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The nature of the stereochemically active lone pair has long been in debate. Here, by application of our recently developed orbital selective external potential (OSEP) method, we have studied the microscopic mechanism of stereochemically active lone pairs in various compounds. The OSEP method allows us to shift the energy level of specific atomic orbital, therefore is helpful to identify unambiguously the role of this orbital to the chemical and physical properties of the system we are interested in. Our numerical results, with compelling proofs, demonstrate that the on-site mixing of cation valence s orbital with the nominally empty p orbitals of the same subshell is crucial to the formation of lone pair, whereas the anion p orbital has only small effect. Our detailed investigation of Sn and Pb monochalcogenides show that structures of these systems have significant effects on lone pairs. In return, the formation of lone pair, which can be controlled by our OSEP method, could result in structural instabilities of Sn and Pb monochalcogenides.

قيم البحث

اقرأ أيضاً

Antimony sulfide (Sb2S3) and selenide (Sb2Se3) have emerged as promising earth-abundant alternatives among thin-film photovoltaic compounds. A distinguishing feature of these materials is their anisotropic crystal structures, which are composed of qu asi-one-dimensional (1D) [Sb4X6]n ribbons. The interaction between ribbons has been reported to be van der Waals (vdW) in nature and Sb2X3 are thus commonly classified in the literature as 1D semiconductors. However, based on first-principles calculations, here we show that inter-ribbon interactions are present in Sb2X3 beyond the vdW regime. The origin of the anisotropic structures is related to the stereochemical activity of the Sb 5s lone pair according to electronic structure analysis. The impacts of structural anisotropy on the electronic and optical properties are further examined, including the presence of higher dimensional Fermi surfaces for charge carrier transport. Our study provides guidelines for optimising the performance of Sb2X3-based solar cells via device structuring based on the underlying crystal anisotropy.
Based on first-principles calculations, we show that chemically active metal ns2 lone pairs play an important role in exciton relaxation and dissociation in low-dimensional halide perovskites. We studied excited-state properties of several recently d iscovered luminescent all-inorganic and hybrid organic-inorganic zero-dimensional (0D) Sn and Pb halides. The results show that, despite the similarity in ground-state electronic structure between Sn and Pb halide perovskites, the chemically more active Sn2+ lone pair leads to stronger excited-state structural distortion and larger Stokes shift in Sn halides. The enhanced Stokes shift hinders excitation energy transport, which reduces energy loss to defects and increases the photoluminescence quantum efficiency (PLQE). The presence of the ns2 metal cations in the 0D halide perovskites also promotes the exciton dissociation into electron and hole polarons especially in all-inorganic compounds, in which the coupling between metal-halide clusters is significant.
The performance of kesterite thin-film solar cells is limited by a low open-circuit voltage due to defect-mediated electron-hole recombination. We calculate the non-radiative carrier-capture cross sections and Shockley-Read-Hall recombination coeffic ients of deep-level point defects in Cu$_2$ZnSnS$_4$ (CZTS) from first-principles. While the oxidation state of Sn is +4 in stoichiometric CZTS, inert lone pair (5$s^2$) formation lowers the oxidation state to +2. The stability of the lone pair suppresses the ionization of certain point defects, inducing charge transition levels deep in the band gap. We find large lattice distortions associated with the lone-pair defect centers due to the difference in ionic radii between Sn(II) and Sn(IV). The combination of a deep trap level and large lattice distortion facilitates efficient non-radiative carrier capture, with capture cross-sections exceeding $10^{-12}$ cm$^2$. The results highlight a connection between redox active cations and `killer defect centres that form giant carrier traps. This lone pair effect will be relevant to other emerging photovoltaic materials containing n$s^2$ cations.
Reducing thermal conductivity ($kappa$) is an efficient way to boost the thermoelectric performance to achieve direct solid-state conversion to electrical power from thermal energy, which has lots of valuable applications in reusing waste resources. In this study, we propose an effective approach for realizing low $kappa$ by introducing lone-pair electrons or making the lone-pair electrons stereochemically active through bond nanodesigning. As a case study, by cutting at the (111) cross section of the three-dimensional cubic boron arsenide (c-BAs), the $kappa$ is lowered by more than one order of magnitude in the resultant two-dimensional system of graphene-like BAs (g-BAs) due to the stereochemically activated lone-pair electrons. Similar concept can be also extended to other systems with lone-pair electrons beyond BAs, such as group III-V compounds, where a strong correlation between $kappa$ modulation and electronegativity difference for binary compounds is found. Thus, the lone-pair electrons combined with a small electronegativity difference could be the indicator of lowering $kappa$ through bond nanodesigning to change the coordination environment. The proposed approach for realizing low $kappa$ and the underlying mechanism uncovered in this study would largely benefit the design of thermoelectric devices with improved performance, especially in future researches involving novel materials for energy applications.
A coherent state technique is used to generate an Interacting Boson Model (IBM) Hamiltonian energy surface that simulates a mean field energy surface. The method presented here has some significant advantages over previous work. Specifically, that th is can be a completely predictive requiring no a priori knowledge of the IBM parameters. The technique allows for the prediction of the low lying energy spectra and electromagnetic transition rates which are of astrophysical interest. Results and comparison with experiment are included for krypton, molybdenum, palladium, cadmium, gadolinium, dysprosium and erbium nuclei.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا