ﻻ يوجد ملخص باللغة العربية
The performance of kesterite thin-film solar cells is limited by a low open-circuit voltage due to defect-mediated electron-hole recombination. We calculate the non-radiative carrier-capture cross sections and Shockley-Read-Hall recombination coefficients of deep-level point defects in Cu$_2$ZnSnS$_4$ (CZTS) from first-principles. While the oxidation state of Sn is +4 in stoichiometric CZTS, inert lone pair (5$s^2$) formation lowers the oxidation state to +2. The stability of the lone pair suppresses the ionization of certain point defects, inducing charge transition levels deep in the band gap. We find large lattice distortions associated with the lone-pair defect centers due to the difference in ionic radii between Sn(II) and Sn(IV). The combination of a deep trap level and large lattice distortion facilitates efficient non-radiative carrier capture, with capture cross-sections exceeding $10^{-12}$ cm$^2$. The results highlight a connection between redox active cations and `killer defect centres that form giant carrier traps. This lone pair effect will be relevant to other emerging photovoltaic materials containing n$s^2$ cations.
We present evidence that band gap narrowing at the heterointerface may be a major cause of the large open circuit voltage deficit of Cu$_2$ZnSnS$_4$/CdS solar cells. Band gap narrowing is caused by surface states that extend the Cu$_2$ZnSnS$_4$ valen
The unique properties of organic semiconductors make them versatile base materials for many applications ranging from light emitting diodes to transistors. The low spin-orbit coupling typical for carbon-based materials and the resulting long spin lif
Antimony sulfide (Sb2S3) and selenide (Sb2Se3) have emerged as promising earth-abundant alternatives among thin-film photovoltaic compounds. A distinguishing feature of these materials is their anisotropic crystal structures, which are composed of qu
Based on first-principles calculations, we show that chemically active metal ns2 lone pairs play an important role in exciton relaxation and dissociation in low-dimensional halide perovskites. We studied excited-state properties of several recently d
Cuprous oxide has been conceived as a potential alternative to traditional organic hole transport layers in hybrid halide perovskite-based solar cells. Device simulations predict record efficiencies using this semiconductor, but experimental results