ترغب بنشر مسار تعليمي؟ اضغط هنا

Specific heat and thermal conductivity of ferromagnetic magnons in Yttrium Iron Garnet

93   0   0.0 ( 0 )
 نشر من قبل Shiyan Li
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The specific heat and thermal conductivity of the insulating ferrimagnet Y$_3$Fe$_5$O$_{12}$ (Yttrium Iron Garnet, YIG) single crystal were measured down to 50 mK. The ferromagnetic magnon specific heat $C$$_m$ shows a characteristic $T^{1.5}$ dependence down to 0.77 K. Below 0.77 K, a downward deviation is observed, which is attributed to the magnetic dipole-dipole interaction with typical magnitude of 10$^{-4}$ eV. The ferromagnetic magnon thermal conductivity $kappa_m$ does not show the characteristic $T^2$ dependence below 0.8 K. To fit the $kappa_m$ data, both magnetic defect scattering effect and dipole-dipole interaction are taken into account. These results complete our understanding of the thermodynamic and thermal transport properties of the low-lying ferromagnetic magnons.

قيم البحث

اقرأ أيضاً

Hybridizing collective spin excitations and a cavity with high cooperativity provides a new research subject in the field of cavity quantum electrodynamics and can also have potential applications to quantum information. Here we report an experimenta l study of cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-iron-garnet (YIG) sphere at both cryogenic and room temperatures. We observe for the first time a strong coupling of the same cavity mode to both a ferromagnetic-resonance (FMR) mode and a magnetostatic (MS) mode near FMR in the quantum limit. This is achieved at a temperature ~ 22 mK, where the average microwave photon number in the cavity is less than one. At room temperature, we also observe strong coupling of the cavity mode to the FMR mode in the same YIG sphere and find a slight increase of the damping rate of the FMR mode. These observations reveal the extraordinary robustness of the FMR mode against temperature. However, the MS mode becomes unobservable at room temperature in the measured transmission spectrum of the microwave cavity containing the YIG sphere. Our numerical simulations show that this is due to a drastic increase of the damping rate of the MS mode.
Spin currents are generated within the bulk of magnetic materials due to heat flow, an effect called intrinsic spin-Seebeck. This bulk bosonic spin current consists of a diffusing thermal magnon cloud, parametrized by the magnon chemical potential ($ mu_{m}$), with a diffusion length of several microns in yttrium iron garnet (YIG). Transient opto-thermal measurements of the spin-Seebeck effect (SSE) as a function of temperature reveal the time evolution of $mu_{m}$ due to intrinsic SSE in YIG. The interface SSE develops at times < 2 ns while the intrinsic SSE signal continues to evolve at times > 500 $mu$s, dominating the temperature dependence of SSE in bulk YIG. Time-dependent SSE data are fit to a multi-temperature model of coupled spin/heat transport using finite element method (FEM), where the magnon spin lifetime ($tau$) and magnon-phonon thermalization time ($tau_{mp}$) are used as fit parameters. From 300 K to 4 K, $tau_{mp}$ varies from 1 to 10 ns, whereas $tau$ varies from 2 to 60 $mu$s with the spin lifetime peaking at 90 K. At low temperature, a reduction in $tau$ is observed consistent with impurity relaxation reported in ferromagnetic resonance measurements. These results demonstrate that the thermal magnon cloud in YIG contains extremely low frequency magnons (~10 GHz) providing spectral insight to the microscopic scattering processes involved in magnon spin/heat diffusion.
110 - X. J. Zhou , G. Y. Shi , J. H. Han 2017
Spin information carried by magnons is attractive for computing technology and the development of magnon-based computing circuits is of great interest. However, magnon transport in insulators has been challenging, different from the clear physical pi cture for spin transport in conductors. Here we investigate the lateral transport properties of thermally excited magnons in yttrium iron garnet (YIG), a model magnetic insulator. Polarity reversals of detected spins in non-local geometry devices have been experimentally observed and are strongly dependent on temperature, YIG film thickness, and injector-detector separation distance. A competing two-channel transport model for thermally excited magnons is proposed, which is qualitatively consistent with the spin signal behavior. In addition to the fundamental significance for thermal magnon transport, our work furthers the development of magnonics by creating an easily accessible magnon source with controllable transport
Spin-phonon interaction is an important channel for spin and energy relaxation in magnetic insulators. Understanding this interaction is critical for developing magnetic insulator-based spintronic devices. Quantifying this interaction in yttrium iron garnet (YIG), one of the most extensively investigated magnetic insulators, remains challenging because of the large number of atoms in a unit cell. Here, we report temperature-dependent and polarization-resolved Raman measurements in a YIG bulk crystal. We first classify the phonon modes based on their symmetry. We then develop a modified mean-field theory and define a symmetry-adapted parameter to quantify spin-phonon interaction in a phonon-mode specific way for the first time in YIG. Based on this improved mean-field theory, we discover a positive correlation between the spin-phonon interaction strength and the phonon frequency.
The nuclear and magnetic structure and full magnon dispersions of yttrium iron garnet Y$_3$Fe$_5$O$_{12}$ have been studied by neutron scattering. The refined nuclear structure is distorted to a trigonal space group of $Rbar{3}$. The highest-energy d ispersion extends up to 86 meV. The observed dispersions are reproduced by a simple model with three nearest-neighbor-exchange integrals between 16$a$ (octahedral) and 24$d$ (tetrahedral) sites, $J_{aa}$, $J_{ad}$, and $J_{dd}$, which are estimated to be 0.00$pm$0.05, $-$2.90$pm$0.07, and $-$0.35$pm$0.08 meV, respectively. The lowest-energy dispersion below 14 meV exhibits a quadratic dispersion as expected from ferromagnetic magnons. The imaginary part of $q$-integrated dynamical spin susceptibility $chi$($E$) exhibits a square-root energy-dependence in the low energies. The magnon density of state is estimated from the $chi$($E$) obtained on an absolute scale. The value is consistent with a single polarization mode for the magnon branch expected theoretically.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا