ﻻ يوجد ملخص باللغة العربية
Gamma-ray bursts are associated with catastrophic cosmic events. They appear when a new black hole, created after the explosion of a massive star or the merger of two compact stars, quickly accretes the matter around it and ejects a transient relativistic jet in our direction. This review discusses the various types of gamma-ray bursts, their progenitors, their beaming and their rate in the local universe. We emphasize the broad astrophysical interest of GRB studies, and the crucial role of high-energy satellites as exclusive suppliers of GRB alerts and initial locations.
Mergers of double neutron stars are considered the most likely progenitors for short gamma-ray bursts. Indeed such a merger can produce a black hole with a transient accreting torus of nuclear matter (Lee & Ramirez-Ruiz 2007, Oechslin & Janka 2006),
We review the likely population, observational properties, and broad implications of stellar-mass black holes and ultraluminous x-ray sources. We focus on the clear empirical rules connecting accretion and outflow that have been established for stell
The LIGO and Virgo detectors have recently directly observed gravitational waves from several mergers of pairs of stellar-mass black holes, as well as from one merging pair of neutron stars. These observations raise the hope that compact object merge
Gravitational wave interferometers have proved the existence of a new class of binary black holes (BBHs) weighting tens of solar masses and they have provided the first reliable measurement of the rate of coalescing black holes (BHs) in the local uni
During the last ~50 years, the population of black hole candidates in X-ray binaries has increased considerably with 59 Galactic objects detected in transient low-mass X-ray binaries, plus a few in persistent systems (including ~5 extragalactic binar