ترغب بنشر مسار تعليمي؟ اضغط هنا

Conditional spin counting statistics as a probe of Coulomb interaction and spin-resolved bunching

338   0   0.0 ( 0 )
 نشر من قبل JunYan Luo
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Full counting statistics is a powerful tool to characterize the noise and correlations in transport through mesoscopic systems. In this work, we propose the theory of conditional spin counting statistics, i.e., the statistical fluctuations of spin-up (down) current given the observation of the spin-down (up) current. In the context of transport through a single quantum dot, it is demonstrated that a strong Coulomb interaction leads to a conditional spin counting statistics that exhibits a substantial change in comparison to that without Coulomb repulsion. It thus can be served as an effective way to probe the Coulomb interactions in mesoscopic transport systems. In case of spin polarized transport, it is further shown that the conditional spin counting statistics offers a transparent tool to reveal the spin-resolved bunching behavior.

قيم البحث

اقرأ أيضاً

We investigate the full counting statistics (FCS) of spin-conserving and spin-flip charge transitions in Pauli-spin blockade regime of a GaAs double quantum dot. A theoretical model is proposed to evaluate all spin-conserving and spin-flip tunnel rat es, and to demonstrate the fundamental relation between FCS and waiting time distribution. We observe the remarkable features of parity effect and a tail structure in the constructed FCS, which do not appear in the Poisson distribution, and are originated from spin degeneracy and coexistence of slow and fast transitions, respectively. This study is potentially useful for elucidating the spin-related and other complex transition dynamics in quantum systems.
We study spin-resolved noise in Coulomb blockaded double quantum dots coupled to ferromagnetic electrodes. The modulation of the interdot coupling and spin polarization in the electrodes gives rise to an intriguing dynamical spin $uparrow$-$uparrow$ ($downarrow$-$downarrow$) blockade mechanism: Bunching of up (down) spins due to dynamical blockade of an up (down) spin. In contrast to the conventional dynamical spin $uparrow$-$downarrow$ bunching (bunching of up spins entailed by dynamical blockade of a down spin), this new bunching behavior is found to be intimately associated with the spin mutual-correlation, i.e., the noise fluctuation between opposite spin currents. We further demonstrate that the dynamical spin $uparrow$-$uparrow$ and $uparrow$-$downarrow$ bunching of tunneling events may be coexistent in the regime of weak interdot coupling and low spin polarization.
Spin-orbit qubit (SOQ) is the dressed spin by the orbital degree of freedom through a strong spin-orbit coupling. We show that Coulomb interaction between two electrons in quantum dots located separately in two nanowires can efficiently induce quantu m entanglement between two SOQs. The physical mechanism to achieve such quantum entanglement is based on the feasibility of the SOQ responding to the external electric field via an intrinsic electric dipole spin resonance.
We report coherent operation of a singlet-triplet qubit controlled by the arrangement of two electrons in an adjacent double quantum dot. The system we investigate consists of two pairs of capacitively coupled double quantum dots fabricated by electr ostatic gates on the surface of a GaAs heterostructure. We extract the strength of the capacitive coupling between qubit and double quantum dot and show that the present geometry allows fast conditional gate operation, opening pathways to multi-qubit control and implementation of quantum algorithms with spin qubits.
A mesoscopic Coulomb blockade system with two identical transport channels is studied in terms of full counting statistics. It is found that the average current cannot distinguish the quantum constructive interference from the classical non-interfere nce, but the shot noise and skewness are more sensitive to the nature of quantum mechanical interference and can fulfill that task. The interesting super-Poisson shot noise is found and is demonstrated as a consequence of constructive interference, which induces an effective system with fast-and-slow transport channels. Dephasing effects on the counting statistics are carried out to display the continuous transition from quantum interfering to non-interfering transports.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا