ﻻ يوجد ملخص باللغة العربية
The Banks-Casher relation links the spectral density of the Dirac operator with the existence of a chiral condensate and spontaneous breaking of chiral symmetry. This relation receives corrections from a finite value of the quark mass, a finite space-time volume and, if evaluated on a discrete lattice, from the finite value of the lattice spacing a. We present a status report of a determination of these corrections for Wilson quarks.
We report on our ongoing project of determining the chiral condensate of two-flavor QCD from the Banks-Casher relation. We compute the mode number of the O(a)-improved Wilson-Dirac operator for several values of Lambda, and we discuss different fitti
We describe two calculations involving P-wave mesons made of Wilson quarks: the strong coupling constant $alpha_s$ in the presence of two flavors of light dynamical fermions and the mass and decay constant of the $a_1$ meson.
We show that, under certain general assumptions, any sensible lattice Dirac operator satisfies a generalized form of the Ginsparg-Wilson relation (GWR). Those assumptions, on the other hand, are mostly dictated by large momentum behaviour considerati
The WHOT-QCD Collaboration is pushing forward lattice studies of QCD at finite temperatures and densities using improved Wilson quarks. We first present results on QCD at zero and finite densities with two flavors of degenerate quarks (N_F=2 QCD) ado
We present the corrections to the fermion propagator, to second order in the lattice spacing, O(a^2), in 1-loop perturbation theory. The fermions are described by the clover action and for the gluons we use a 3-parameter family of Symanzik improved a