ﻻ يوجد ملخص باللغة العربية
Consider the stochastic heat equation $partial_tu=mathscr{L}u+lambdasigma(u)xi$, where $mathscr{L}$ denotes the generator of a L{e}vy process on a locally compact Hausdorff Abelian group $G$, $sigma:mathbf{R}tomathbf{R}$ is Lipschitz continuous, $lambdagg1$ is a large parameter, and $xi$ denotes space-time white noise on $mathbf{R}_+times G$. The main result of this paper contains a near-dichotomy for the (expected squared) energy $mathrm{E}(|u_t|_{L^2(G)}^2)$ of the solution. Roughly speaking, that dichotomy says that, in all known cases where $u$ is intermittent, the energy of the solution behaves generically as $exp{operatorname {const}cdot,lambda^2}$ when $G$ is discrete and $geexp{operatorname {const}cdot,lambda^4}$ when $G$ is connected.
In this paper we prove necessary conditions for optimality of a stochastic control problem for a class of stochastic partial differential equations that is controlled through the boundary. This kind of problems can be interpreted as a stochastic cont
It is generally argued that the solution to a stochastic PDE with multiplicative noise---such as $dot{u}=frac12 u+uxi$, where $xi$ denotes space-time white noise---routinely produces exceptionally-large peaks that are macroscopically multifractal. Se
Let $mathscr{T}$ be the regularity structure associated with a given system of singular stochastic PDEs. The paracontrolled representation of the $sf Pi$ map provides a linear parametrization of the nonlinear space of admissible models $sf M=(g,Pi)$
We propose a definition of viscosity solutions to fully nonlinear PDEs driven by a rough path via appropriate notions of test functions and rough jets. These objects will be defined as controlled processes with respect to the driving rough path. We s
We show that the Markov semigroups generated by a large class of singular stochastic PDEs satisfy the strong Feller property. These include for example the KPZ equation and the dynamical $Phi^4_3$ model. As a corollary, we prove that the Brownian bri