ترغب بنشر مسار تعليمي؟ اضغط هنا

High resolution study of the cluster complexes in a lensed spiral at redshift ~1.5; constraints on the bulge formation and disk evolution

91   0   0.0 ( 0 )
 نشر من قبل Angela Adamo
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Angela Adamo




اسأل ChatGPT حول البحث

We analyse the clump population of the spiral galaxy Sp 1149 at redshift 1.5. Located behind the galaxy cluster MACS J1149.5+2223, Sp 1149 has been significantly magnified allowing us to study the galaxy on physical scales down to ~100 pc. We have used the publicly available multi-band imaging dataset (CLASH) to reconstruct the spectral energy distributions (SEDs) of the clumps in Sp 1149, and derive, by means of stellar evolutionary models, their physical properties. We found that 40% of the clumps observed in Sp 1149 are older than 30 Myr and can be as old as 300 Myr. These are also the more massive (luminous) clumps in the galaxy. Among the complexes in the local reference sample, the star-forming knots in luminous blue compact galaxies could be considered progenitor analogs of these long-lived clumps. The remaining 60% of clumps have colors comparable to local cluster complexes, suggesting a similar young age. We observe that the Sp 1149 clumps follow the M ~ R^2 relation similar to local cluster complexes, suggesting similar formation mechanisms although they may have different initial conditions (e.g. higher gas surface densities). We suggest that the galaxy is experiencing a slow decline in star formation rate and a likely transitional phase toward a more quiescent star-formation mode. The older clumps have survived between 6 and 20 dynamical times and are all located at projected distances smaller than 4 kpc from the centre. Their current location suggests migration toward the centre and the possibility to be the building blocks of the bulge. On the other hand, the dynamical timescale of the younger clumps are significantly shorter, meaning that they are quite close to their birthplace. We show that the clumps of Sp 1149 may account for the expected metal-rich globular cluster population usually associated with the bulge and thick disk components of local spirals.



قيم البحث

اقرأ أيضاً

212 - T.-T. Yuan 2011
We present the first metallicity gradient measurement for a grand-design face-on spiral galaxy at z~1.5. This galaxy has been magnified by a factor of 22$times$ by a massive, X-ray luminous galaxy cluster MACS,J1149.5+2223 at z=0.544. Using the Laser Guide Star Adaptive Optics aided integral field spectrograph OSIRIS on KECK II, we target the Halpha emission and achieve a spatial resolution of 0.1, corresponding to a source plane resolution of 170 pc. The galaxy has well-developed spiral arms and the nebular emission line dynamics clearly indicate a rotationally supported disk with V_{rot}/sigma~4. The best-fit disk velocity field model yields a maximum rotation of V_{rot} sin{i}=150$pm$15 km s^{-1}, and a dynamical mass of M_{dyn}=1.3$pm0.2times10^{10}csc^2(i) M_{odot} (within 2.5,kpc), where the inclination angle i=45$pm10^{circ}$. Based on the [NII] and Halpha ratios, we measured the radial chemical abundance gradient from the inner hundreds of parsecs out to ~5 kpc. The slope of the gradient is -0.16$pm$0.02 dex kpc$^{-1}$, significantly steeper than the gradient of late-type or early-type galaxies in the local universe. If representative of disk galaxies at z~1.5, our results support an inside-out disk formation scenario in which early infall/collapse in the galaxy center builds a chemically enriched nucleus, followed by slow enrichment of the disk over the next 9 Gyr.
Galaxy flybys are as common as mergers in low redshift universe and are important for galaxy evolution as they involve the exchange of significant amounts of mass and energy. In this study we investigate the effect of minor flybys on the bulges, disk s, and spiral arms of Milky Way mass galaxies for two types of bulges - classical bulges and boxy/peanut pseudobulges. Our N-body simulations comprise of two disk galaxies of mass ratios 10:1 and 5:1, where the disks of the galaxies lie in their orbital plane and the pericenter distance is varied. We performed photometric and kinematic bulge-disk decomposition at regular time steps and traced the evolution of the disk size, spiral structure, bulge sersic index, bulge mass, and bulge angular momentum. Our results show that the main effect on the disks is disk thickening, which is seen as the increase in the ratio of disk scale height to scale radius. The strength of the spiral structure A2/A0 shows small oscillations about the mean time-varying amplitude in the pseudobulge host galaxies. The flyby has no significant effect on non-rotating classical bulge, which shows that these bulges are extremely stable in galaxy interactions. However, the pseudobulges become dynamically hotter in flybys indicating that flybys may play an important role in accelerating the rate of secular evolution in disk galaxies. This effect on pseudobulges is a result of their rotating nature as part of the bar. Also, flybys do not affect the time and strength of bar buckling.
Lyman Break Analogs (LBAs), characterized by high far-UV luminosities and surface brightnesses as detected by GALEX, are intensely star-forming galaxies in the low-redshift universe ($zsim 0.2$), with star formation rates reaching up to 50 times that of the Milky Way. These objects present metallicities, morphologies and other physical properties similar to higher redshift Lyman Break Galaxies (LBGs), motivating the detailed study of LBAs as local laboratories of this high-redshift galaxy population. We present results from our recent integral-field spectroscopy survey of LBAs with Keck/OSIRIS, which shows that these galaxies have the same nebular gas kinematic properties as high-redshift LBGs. We argue that such kinematic studies alone are not an appropriate diagnostic to rule out merger events as the trigger for the observed starburst. Comparison between the kinematic analysis and morphological indices from HST imaging illustrates the difficulties of properly identifying (minor or major) merger events, with no clear correlation between the results using either of the two methods. Artificial redshifting of our data indicates that this problem becomes even worse at high redshift due to surface brightness dimming and resolution loss. Whether mergers could generate the observed kinematic properties is strongly dependent on gas fractions in these galaxies. We present preliminary results of a CARMA survey for LBAs and discuss the implications of the inferred molecular gas masses for formation models.
Integral field spectroscopy of galaxies at redshift z~2 has revealed a population of early-forming, rotationally-supported disks. These high-redshift systems provide a potentially important clue to the formation processes that build disk galaxies in the universe. A particularly well-studied example is the z=2.38 galaxy BzK-15504, which was shown by Genzel et al. (2006) to be a rotationally supported disk despite the fact that its high star formation rate and short gas consumption timescale require a very rapid acquisition of mass. Previous kinematical analyses have suggested that z~2 disk galaxies like BzK-15504 did not form through mergers because their line-of-sight velocity fields display low levels of asymmetry. We perform the same kinematical analysis on a set of simulated disk galaxies formed in gas-rich mergers of the type that may be common at high redshift, and show that the remnant disks display low velocity field asymmetry and satisfy the criteria that have been used to classify high-redshift galaxies as disks observationally. Further, we compare one of our remnants to the bulk properties of BzK-15504 and show that it has a star formation rate, gas surface density, and a circular velocity-to-velocity dispersion ratio that matches BzK-15504 remarkably well. We suggest that observations of high-redshift disk galaxies like BzK-15504 are consistent with the hypothesis that gas-rich mergers play an important role in disk formation at high redshift.
117 - A.G. Bedregal 2011
We present absorption-line index gradients for a sample of S0 galaxies in the Fornax Cluster. The sample has been selected to span a wide range in galaxy mass, and the deep VLT-FORS2 spectroscopy allows us to explore the stellar populations all the w ay to the outer disk-dominated regions of these galaxies. We find that globally, in both bulges and disks, star formation ceased earliest in the most massive systems, as a further manifestation of downsizing. However, within many galaxies, we find an age gradient which indicates that star formation ended first in the outermost regions. Metallicity gradients, when detected, are always negative such that the galaxy centres are more metal-rich. This finding fits with a picture in which star formation continued in the central regions, with enriched material, after it had stopped in the outskirts. Age and metallicity gradients are correlated, suggesting that large differences in star formation history between the inner and outer parts of S0 galaxies yield large differences in their chemical enrichment. In agreement with previous results, we conclude that the radial variations in the stellar populations of S0 galaxies are compatible with the hypothesis that these galaxies are the descendants of spiral galaxies whose star formation has ceased. With the addition of radial gradient information, we are able to show that this shutdown of star formation occurred from the outside inward, with the later star formation in the central regions offering a plausible mechanism for enhancing the bulge light in these systems, as the transformation to more bulge-dominated S0 galaxies requires.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا