ترغب بنشر مسار تعليمي؟ اضغط هنا

Terrestrial effects of possible astrophysical sources of an AD 774-775 increase in 14C production

53   0   0.0 ( 0 )
 نشر من قبل Brian Thomas
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine possible sources of a substantial increase in tree ring 14C measurements for the years AD 774-775. Contrary to claims regarding a coronal mass ejection (CME), the required CME energy is not several orders of magnitude greater than known solar events. We consider solar proton events (SPEs) with three different fluences and two different spectra. The data may be explained by an event with fluence about one order of magnitude beyond the October 1989 SPE. Two hard spectrum cases considered here result in moderate ozone depletion, so no mass extinction is implied, though we do predict increases in erythema and damage to plants from enhanced solar UV. We are able to rule out an event with a very soft spectrum that causes severe ozone depletion and subsequent biological impacts. Nitrate enhancements are consistent with their apparent absence in ice core data. The modern technological implications of such an event may be extreme, and considering recent confirmation of superflares on solar-type stars, this issue merits attention.

قيم البحث

اقرأ أيضاً

The motivation for our study is the disputed cause for the strong variation of 14-C around AD 775. Our method is to compare the 14-C variation around AD 775 with other periods of strong variability. Our results are: (a) We see three periods, where 14 -C varied over 200 yr in a special way showing a certain pattern of strong secular variation: after a Grand Minimum with strongly increasing 14-C, there is a series of strong short-term drop(s), rise(s), and again drop(s) within 60 yr, ending up to 200 yr after the start of the Grand Minimum. These three periods include the strong rises around BC 671, AD 775, and AD 1795. (b) We show with several solar activity proxies (radioisotopes, sunspots, and aurorae) for the AD 770s and 1790s that such intense rapid 14-C increases can be explained by strong rapid decreases in solar activity and, hence, wind, so that the decrease in solar modulation potential leads to an increase in radioisotope production. (c) The strong rises around AD 775 and 1795 are due to three effects, (i) very strong activity in the previous cycles (i.e. very low 14-C level), (ii) the declining phase of a very strong Schwabe cycle, and (iii) a phase of very weak activity after the strong 14-C rise -- very short and/or weak cycle(s) like the suddenly starting Dalton minimum. (d) Furthermore, we can show that the strong change at AD 1795 happened after a pair of two packages of four Schwabe cycles with certain hemispheric leadership (each package consists of two Gnevyshev-Ohl pairs, respectively two Hale-Babcock pairs). We show with several additional arguments that the rise around AD 775 was not that special. ...
We present the results of full new calculation of radiocarbon 14C production in the Earth atmosphere, using a numerical Monte-Carlo model. We provide, for the first time, a tabulated 14C yield function for the energy of primary cosmic ray particles r anging from 0.1 to 1000 GeV/nucleon. We have calculated the global production rate of 14C, which is 1.64 and 1.88 atoms/cm2/s for the modern time and for the pre-industrial epoch, respectively. This is close to the values obtained from the carbon cycle reservoir inventory. We argue that earlier models overestimated the global 14C production rate because of outdated spectra of cosmic ray heavier nuclei. The mean contribution of solar energetic particles to the global 14C is calculated as about 0.25% for the modern epoch. Our model provides a new tool to calculate the 14C production in the Earths atmosphere, which can be applied, e.g., to reconstructions of solar activity in the past.
The climate and circulation of a terrestrial planet are governed by, among other things, the distance to its host star, its size, rotation rate, obliquity, atmospheric composition and gravity. Here we explore the effects of the last of these, the New tonian gravitational acceleration, on its atmosphere and climate. We first demonstrate that if the atmosphere obeys the hydrostatic primitive equations, which are a very good approximation for most terrestrial atmospheres, and if the radiative forcing is unaltered, changes in gravity have no effect at all on the circulation except for a vertical rescaling. That is to say, the effects of gravity may be completely scaled away and the circulation is unaltered. However, if the atmosphere contains a dilute condensible that is radiatively active, such as water or methane, then an increase in gravity will generally lead to a cooling of the planet because the total path length of the condensible will be reduced as gravity increases, leading to a reduction in the greenhouse effect. Furthermore, the specific humidity will decrease, leading to changes in the moist adiabatic lapse rate, in the equator-to-pole heat transport, and in the surface energy balance because of changes in the sensible and latent fluxes. These effects are all demonstrated both by theoretical arguments and by numerical simulations with moist and dry general circulation models.
Based on cosmological rates, it is probable that at least once in the last Gy the Earth has been irradiated by a gamma-ray burst in our Galaxy from within 2 kpc. Using a two-dimensional atmospheric model we have performed the first computation of the effects upon the Earths atmosphere of one such impulsive event. A ten second burst delivering 100 kJ/m^2 to the Earth penetrates to the stratosphere and results in globally averaged ozone depletion of 35%, with depletion reaching 55% at some latitudes. Significant global depletion persists for over 5 years after the burst. This depletion would have dramatic implications for life since a 50% decrease in ozone column density results in approximately three times the normal UVB flux. Widespread extinctions are likely, based on extrapolation from UVB sensitivity of modern organisms. Additional effects include a shot of nitrate fertilizer and NO2 opacity in the visible providing a cooling perturbation to the climate over a similar timescale. These results lend support to the hypothesis that a GRB may have initiated the late Ordovician mass extinction (Melott et al. 2004).
Highly volcanic exoplanets, which can be variously characterized as lava worlds, magma ocean worlds, or super-Ios are high priority targets for investigation. The term lava world may refer to any planet with extensive surface lava lakes, while the te rm magma ocean world refers to planets with global or hemispherical magma oceans at their surface. Highly volcanic planets, including super-Ios, may simply have large, or large numbers of, active explosive or extrusive volcanoes of any form. They are plausibly highly diverse, with magmatic processes across a wide range of compositions, temperatures, activity rates, volcanic eruption styles, and background gravitational force magnitudes. Worlds in all these classes are likely to be the most characterizable rocky exoplanets in the near future due to observational advantages that stem from their preferential occurrence in short orbital periods and their bright day-side flux in the infrared. Transit techniques should enable a level of characterization of these worlds analogous to hot Jupiters. Understanding processes on highly volcanic worlds is critical to interpret imminent observations. The physical states of these worlds are likely to inform not just geodynamic processes, but also planet formation, and phenomena crucial to habitability. Volcanic and magmatic activity uniquely allows chemical investigation of otherwise spectroscopically inaccessible interior compositions. These worlds will be vital to assess the degree to which planetary interior element abundances compare to their stellar hosts, and may also offer pathways to study both the very young Earth, and the very early form of many silicate planets where magma oceans and surface lava lakes are expected to be more prevalent. We suggest that highly volcanic worlds may become second only to habitable worlds in terms of both scientific and public long-term interest.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا