ترغب بنشر مسار تعليمي؟ اضغط هنا

Hemispheric Asymmetries of Solar Photospheric Magnetism: Radiative, Particulate, and Heliospheric Impacts

91   0   0.0 ( 0 )
 نشر من قبل Scott McIntosh
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Among many other measurable quantities the summer of 2009 saw a considerable low in the radiative output of the Sun that was temporally coincident with the largest cosmic ray flux ever measured at 1AU. A hemispheric asymmetry in magnetic activity is clearly observed and its evolution monitored and the resulting (prolonged) magnetic imbalance must have had a considerable impact on the structure and energetics of the heliosphere. While we cannot uniquely tie the variance and scale of the surface magnetism to the dwindling radiative and particulate output of the star, or the increased cosmic ray flux through the 2009 minimum, the timing of the decline and rapid recovery in early 2010 would appear to inextricably link them. These observations support a picture where the Suns hemispheres are significantly out of phase with each other. Studying historical sunspot records with this picture in mind shows that the northern hemisphere has been leading since the middle of the last century and that the hemispheric dominance has changed twice in the past 130 years. The observations presented give clear cause for concern, especially with respect to our present understanding of the processes that produce the surface magnetism in the (hidden) solar interior - hemispheric asymmetry is the normal state - the strong symmetry shown in 1996 was abnormal. Further, these observations show that the mechanism(s) which create and transport the magnetic flux magnetic flux are slowly changing with time and, it appears, with only loose coupling across the equator such that those asymmetries can persist for a considerable time. As the current asymmetry persists and the basal energetics of the system continue to dwindle we anticipate new radiative and particulate lows coupled with increased cosmic ray fluxes heading into the next solar minimum.



قيم البحث

اقرأ أيضاً

163 - M. Deal , G. Alecian , Y. Lebreton 2018
Chemical element transport processes are among the crucial physical processes needed for precise stellar modelling. Atomic diffusion by gravitational settling nowadays is usually taken into account, and is essential for helioseismic studies. On the o ther hand, radiative accelerations are rarely accounted for, act differently on the various chemical elements, and can strongly counteract gravity in some stellar mass domains. In this study we aim at determining whether radiative accelerations impact the structure of solar-like oscillating main-sequence stars observed by asteroseismic space missions. We implemented the calculation of radiative accelerations in the CESTAM code using the Single-Valued Parameter method. We built and compared several grids of stellar models including gravitational settling, but some with and others without radiative accelerations. We found that radiative accelerations may not be neglected for stellar masses larger than 1.1~M$_{odot}$ at solar metallicity. The difference in age due to their inclusion in models can reach 9% for the more massive stars of our grids. We estimated that the percentage of the PLATO core program stars whose modelling would require radiative accelerations ranges between 33 and 58% depending on the precision of the seismic data. We conclude that, in the context of Kepler, TESS, and PLATO missions, which provide (or will provide) high quality seismic data, radiative accelerations can have a significant effect when inferring the properties of solar-like oscillators properly. This is particularly important for age inferences. However, the net effect for each individual star results from the competition between atomic diffusion including radiative accelerations and other internal transport processes. This will be investigated in a forthcoming companion paper.
In this paper we study the effects of hemispheric imbalance of magnetic helicity density on breaking the equatorial reflection symmetry of the dynamo generated large-scale magnetic field. Our study employs the axisymmetric dynamo model which takes in to account the nonlinear effect of magnetic helicity conservation. We find that the evolution of the net magnetic helicity density, in other words, the magnetic helicity imbalance, on the surface follows the evolution of the parity of the large-scale magnetic field. Random fluctuations of the $alpha$-effect and the helicity fluxes can inverse the causal relationship, i.e., the magnetic helicity imbalance or the imbalance of magnetic helicity fluxes can drive the magnetic parity breaking. We also found that evolution of the net magnetic helicity of the small-scale fields follows the evolution of the net magnetic helicity of the large-scale fields with some time lag. We interpret this as an effect of the difference of the magnetic helicity fluxes out of the Sun from the large and small scales.
378 - D. Mueller , B. Nicula , S. Felix 2017
Context. Solar observatories are providing the world-wide community with a wealth of data, covering large time ranges, multiple viewpoints, and returning large amounts of data. In particular, the large volume of SDO data presents challenges: it is av ailable only from a few repositories, and full-disk, full-cadence data for reasonable durations of scientific interest are difficult to download practically due to their size and download data rates available to most users. From a scientists perspective this poses three problems: accessing, browsing and finding interesting data as efficiently as possible. Aims. To address these challenges, we have developed JHelioviewer, a visualisation tool for solar data based on the JPEG2000 compression standard and part of the open source ESA/NASA Helioviewer Project. Since the first release of JHelioviewer, the scientific functionality of the software has been extended significantly, and the objective of this paper is to highlight these improvements. Methods. The JPEG2000 standard offers useful new features that facilitate the dissemination and analysis of high-resolution image data and offers a solution to the challenge of efficiently browsing petabyte-scale image archives. The JHelioviewer software is open source, platform independent and extendable via a plug-in architecture. Results. With JHelioviewer, users can visualise the Sun for any time period between September 1991 and today. They can perform basic image processing in real time, track features on the Sun and interactively overlay magnetic field extrapolations. The software integrates solar event data and a time line display. As a first step towards supporting science planning of the upcoming Solar Orbiter mission, JHelioviewer offers a virtual camera model that enables users to set the vantage point to the location of a spacecraft or celestial body at any given time.
60 - D. Syukuya , K. Kusano 2016
Observations of the sun suggest that solar activities systematically create north-south hemispheric asymmetries. For instance, the hemisphere in which the sunspot activity is more active tends to switch after the early half of each solar cycle. Svalg aard & Kamide (2013) recently pointed out that the time gaps of polar field reversal between the north and south hemispheres are simply consequences of the asymmetry of sunspot activity. However, the mechanism underlying the asymmetric feature in solar cycle activities is not yet well understood. In this paper, in order to explain the cause of the asymmetry from the theoretical point of view, we investigate the relationship between the dipole- and quadrupole-type components of the magnetic field in the solar cycle using the mean-field theory based on the flux transport dynamo model. As a result, we found that there are two different attractors of the solar cycle, in which either the north or the south polar field is first reversed, and that the flux transport dynamo model well explains the phase-asymmetry of sunspot activity and the polar field reversal without any ad hoc source of asymmetry.
In this article, we report an evidence of very high and statistically significant relationship between hemispheric asymmetry in solar coronal rotation rate and solar activity. Our approach is based on cross correlation of hemispheric asymmetry index (AI) in rotation rate with annual solar activity indicators. To obtain hemispheric asymmetry in solar rotation rate, we use solar full disc (SFD) images at 30.4 nm, 19.5 nm, and 28.4 nm wavelengths for 24th Solar Cycle i.e., for the period from 2008 to 2018, as recorded by the Solar Terrestrial Relations Observatory (STEREO) space mission. Our analysis shows that hemispheric asymmetry in rotation rate is high during the solar maxima from 2011 to 2014. On the other hand, hemispheric asymmetry drops gradually on both sides (i.e., from 2008 to 2011 and from 2014 to 2018). The results show that asymmetry index (AI) leads sunspot numbers by ~1.56 years. This gives a clear indication that hemispheric asymmetry triggers the formation of sunspots working together with the differential rotation of the Sun.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا