ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulation Study of Hemispheric Phase-Asymmetry in the Solar Cycle

61   0   0.0 ( 0 )
 نشر من قبل Kanya Kusano
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Observations of the sun suggest that solar activities systematically create north-south hemispheric asymmetries. For instance, the hemisphere in which the sunspot activity is more active tends to switch after the early half of each solar cycle. Svalgaard & Kamide (2013) recently pointed out that the time gaps of polar field reversal between the north and south hemispheres are simply consequences of the asymmetry of sunspot activity. However, the mechanism underlying the asymmetric feature in solar cycle activities is not yet well understood. In this paper, in order to explain the cause of the asymmetry from the theoretical point of view, we investigate the relationship between the dipole- and quadrupole-type components of the magnetic field in the solar cycle using the mean-field theory based on the flux transport dynamo model. As a result, we found that there are two different attractors of the solar cycle, in which either the north or the south polar field is first reversed, and that the flux transport dynamo model well explains the phase-asymmetry of sunspot activity and the polar field reversal without any ad hoc source of asymmetry.



قيم البحث

اقرأ أيضاً

In this article, we report an evidence of very high and statistically significant relationship between hemispheric asymmetry in solar coronal rotation rate and solar activity. Our approach is based on cross correlation of hemispheric asymmetry index (AI) in rotation rate with annual solar activity indicators. To obtain hemispheric asymmetry in solar rotation rate, we use solar full disc (SFD) images at 30.4 nm, 19.5 nm, and 28.4 nm wavelengths for 24th Solar Cycle i.e., for the period from 2008 to 2018, as recorded by the Solar Terrestrial Relations Observatory (STEREO) space mission. Our analysis shows that hemispheric asymmetry in rotation rate is high during the solar maxima from 2011 to 2014. On the other hand, hemispheric asymmetry drops gradually on both sides (i.e., from 2008 to 2011 and from 2014 to 2018). The results show that asymmetry index (AI) leads sunspot numbers by ~1.56 years. This gives a clear indication that hemispheric asymmetry triggers the formation of sunspots working together with the differential rotation of the Sun.
A hemispheric preference in the dominant sign of magnetic helicity has been observed in numerous features in the solar atmosphere: i.e., left-handed/right-handed helicity in the northern/southern hemisphere. The relative importance of different physi cal processes which may contribute to the observed hemispheric sign preference (HSP) of magnetic helicity is still under debate. Here, we estimate magnetic helicity flux ($dH/dt$) across the photospheric surface for 4,802 samples of 1,105 unique active regions (ARs) that appeared over an 8-year period from 2010 to 2017 during solar cycle 24, using photospheric vector magnetic field observations by the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). The estimates of $dH/dt$ show that 63% and 65% of the investigated AR samples in the northern and southern hemispheres, respectively, follow the HSP. We also find a trend that the HSP of $dH/dt$ increases from ~50-60% up to ~70-80% as ARs (1) appear at the earlier inclining phase of the solar cycle or higher latitudes; (2) have larger values of $|dH/dt|$, the total unsigned magnetic flux, and the average plasma flow speed. These observational findings support the enhancement of the HSP mainly by the Coriolis force acting on a buoyantly rising and expanding flux tube through the turbulent convection zone. In addition, the differential rotation on the solar surface as well as the tachocline $alpha$-effect of flux-transport dynamo may reinforce the HSP for ARs at higher latitudes.
We believe the Babcock--Leighton process of poloidal field generation to be the main source of irregularity in the solar cycle. The random nature of this process may make the poloidal field in one hemisphere stronger than that in the other hemisphere at the end of a cycle. We expect this to induce an asymmetry in the next sunspot cycle. We look for evidence of this in the observational data and then model it theoretically with our dynamo code. Since actual polar field measurements exist only from 1970s, we use the polar faculae number data recorded by Sheeley (1991) as a proxy of the polar field and estimate the hemispheric asymmetry of the polar field in different solar minima during the major part of the twentieth century. This asymmetry is found to have a reasonable correlation with the asymmetry of the next cycle. We then run our dynamo code by feeding information about this asymmetry at the successive minima and compare with observational data. We find that the theoretically computed asymmetries of different cycles compare favourably with the observational data, the correlation coefficient being 0.73. Due to the coupling between the two hemispheres, any hemispheric asymmetry tends to get attenuated with time. The hemispheric asymmetry of a cycle either from observational data or from theoretical calculation statistically tends to be less than the asymmetry in the polar field (as inferred from the faculae data) in the preceding minimum. This reduction factor turns out to be 0.38 and 0.60 respectively in observational data and theoretical simulation.
In our earlier study of this series (Park et al. 2020, Paper I), we examined the hemispheric sign preference (HSP) of magnetic helicity flux $dH/dt$ across photospheric surfaces of 4802 samples of 1105 unique active regions (ARs) observed during sola r cycle 24. Here, we investigate any association of the HSP, expressed as a degree of compliance, with flaring activity, analyzing the same set of $dH/dt$ estimates as used in Paper I. The AR samples under investigation are assigned to heliographic regions (HRs) defined in the Carrington longitude-latitude plane with a grid spacing of 45$^circ$ in longitude and 15$^circ$ in latitude. For AR samples in each of the defined HRs, we calculate the degree of HSP compliance and the average soft X-ray flare index. The strongest flaring activity is found to be in one distinctive HR with an extremely low HSP compliance of 41% as compared to the mean and standard deviation of 62% and 7%, respectively, over all HRs. This sole HR shows an anti-HSP (i.e., less than 50%) and includes the highly flare-productive AR NOAA 12673, however this AR is not uniquely responsible for the HRs low HSP. We also find that all HRs with the highest flaring activity are located in the southern hemisphere, and they tend to have lower degrees of HSP compliance. These findings point to the presence of localized regions of the convection zone with enhanced turbulence, imparting a greater magnetic complexity and a higher flaring rate to some rising magnetic flux tubes.
In this paper we study the effects of hemispheric imbalance of magnetic helicity density on breaking the equatorial reflection symmetry of the dynamo generated large-scale magnetic field. Our study employs the axisymmetric dynamo model which takes in to account the nonlinear effect of magnetic helicity conservation. We find that the evolution of the net magnetic helicity density, in other words, the magnetic helicity imbalance, on the surface follows the evolution of the parity of the large-scale magnetic field. Random fluctuations of the $alpha$-effect and the helicity fluxes can inverse the causal relationship, i.e., the magnetic helicity imbalance or the imbalance of magnetic helicity fluxes can drive the magnetic parity breaking. We also found that evolution of the net magnetic helicity of the small-scale fields follows the evolution of the net magnetic helicity of the large-scale fields with some time lag. We interpret this as an effect of the difference of the magnetic helicity fluxes out of the Sun from the large and small scales.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا