ﻻ يوجد ملخص باللغة العربية
This paper shows that penalized backward stochastic differential equation (BSDE), which is often used to approximate and solve the corresponding reflected BSDE, admits both optimal stopping representation and optimal control representation. The new feature of the optimal stopping representation is that the player is allowed to stop at exogenous Poisson arrival times. The convergence rate of the penalized BSDE then follows from the optimal stopping representation. The paper then applies to two classes of equations, namely multidimensional reflected BSDE and reflected BSDE with a constraint on the hedging part, and gives stochastic control representations for their corresponding penalized equations.
In this paper we discuss new types of differential equations which we call anticipated backward stochastic differential equations (anticipated BSDEs). In these equations the generator includes not only the values of solutions of the present but also
The BMO martingale theory is extensively used to study nonlinear multi-dimensional stochastic equations (SEs) in $cR^p$ ($pin [1, infty)$) and backward stochastic differential equations (BSDEs) in $cR^ptimes cH^p$ ($pin (1, infty)$) and in $cR^inftyt
This paper is concerned with the switching game of a one-dimensional backward stochastic differential equation (BSDE). The associated Bellman-Isaacs equation is a system of matrix-valued BSDEs living in a special unbounded convex domain with reflecti
The purpose of this note is to provide an existence result for the solution of fully coupled Forward Backward Stochastic Differential Equations (FBSDEs) of the mean field type. These equations occur in the study of mean field games and the optimal control of dynamics of the McKean Vlasov type.
In [5] the authors obtained Mean-Field backward stochastic differential equations (BSDE) associated with a Mean-field stochastic differential equation (SDE) in a natural way as limit of some highly dimensional system of forward and backward SDEs, cor