ترغب بنشر مسار تعليمي؟ اضغط هنا

WMAP9 and the single field models of inflation

97   0   0.0 ( 0 )
 نشر من قبل Laila Alabidi Dr
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Laila Alabidi




اسأل ChatGPT حول البحث

Using the latest release from WMAP, I find that for a reasonable number of e-folds the tree-level potential with self coupling power p=3 is now excluded from the 2-sigma region, the axion monodromy model with the power alpha=2/3 is now excluded from the 1-sigma confidence region for N=47 e-folds and for N=61. alpha=2/5 is also excluded from the 2-sigma region for N=61. I also find that since the upper bound on the running has been reduced, a significant abundance of PBHs requires fractional powers of self-coupling in the Hilltop-type model.



قيم البحث

اقرأ أيضاً

We review 51 models of single-field inflation, paying special attention to the possibility that self-resonance of the unstable inflaton perturbations leads to reheating. We compute Floquet exponents for the models that are consistent with current cos mological data. We find five models that exhibit a strong instability, but only in one of them -- KKLT inflation -- the equation of state efficiently approaches that of radiation.
238 - Laila Alabidi , Ian Huston 2010
In this paper we summarise the status of single field models of inflation in light of the WMAP 7 data release. We find little has changed since the 5 year release, and results are consistent with previous findings. The increase in the upper bound on the running of the spectral index impacts on the status of the production of Primordial Black Holes from single field models. The lower bound on the equilateral configuration of the non-gaussianity parameter is reduced and thus the bounds on the theoretical parameters of (UV) DBI single brane models are weakened. In the case of multiple coincident branes the bounds are also weakened and the two, three or four brane cases will produce a tensor-signal that could possibly be observed in the future.
We present a new class of two-field inflationary attractor models, known as `shift-symmetric orbital inflation, whose behaviour is strongly multi-field but whose predictions are remarkably close to those of single-field inflation. In these models, th e field space metric and potential are such that the inflaton trajectory is along an `angular isometry direction whose `radius is constant but arbitrary. As a result, the radial (isocurvature) perturbations away from the trajectory are exactly massless and they freeze on superhorizon scales. These models are the first exact realization of the `ultra-light isocurvature scenario, previously described in the literature, where a combined shift symmetry emerges between the curvature and isocurvature perturbations and results in primordial perturbation spectra that are entirely consistent with current observations. Due to the turning trajectory, the radial perturbation sources the tangential (curvature) perturbation and makes it grow linearly in time. As a result, only one degree of freedom (i.e. the one from isocurvature modes) is responsible for the primordial observables at the end of inflation, which yields the same phenomenology as in single-field inflation. In particular, isocurvature perturbations and local non-Gaussianity are highly suppressed here, even if the inflationary dynamics is truly multi-field. We comment on the generalization to models with more than two fields.
We study single-field inflationary models with steep step-like features in the potential that lead to the temporary violation of the slow-roll conditions during the evolution of the inflaton. These features enhance the power spectrum of the curvature perturbations by several orders of magnitude at certain scales and also produce prominent oscillatory patterns. We study analytically and numerically the inflationary dynamics. We describe quantitatively the size of the enhancement, as well as the profile of the oscillations, which are shaped by the number and position of the features in the potential. The induced tensor power spectrum inherits the distinctive oscillatory profile of the curvature spectrum and is potentially detectable by near-future space interferometers. The enhancement of the power specrtum by step-like features, though significant, may be insufficient to trigger the production of a sizeable number of primordial black holes if radiation dominates the energy density of the early universe. However, it can result in sufficient black hole production if the universe is dominated by non-relativistic matter. For the latter scenario, we find that deviations from the standard monochromatic profile of the mass spectrum of primordial black holes are possible because of the multiple-peak structure of the curvature power spectrum.
We initially consider two simple situations where inflationary slow roll parameters are large and modes no longer freeze out shortly after exiting the horizon, treating both cases analytically. We then consider applications to transient phases where the slow roll parameters can become large, especially in the context of the common `fast-roll inflation frequently used as a mechanism to explain the anomalously low scalar power at low $l$ in the CMB. These transient cases we treat numerically. We find when $epsilon$, the first slow roll parameter, and only $epsilon$ is large, modes decay outside the horizon, and when $delta$, the second slow roll parameter, is large, modes grow outside the horizon. When multiple slow roll parameters are large the behavior in general is more complicated, but we nevertheless show in the fast-roll inflation case, modes grow outside the horizon.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا