ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of Instabilities of Coherent Transverse Ocillations in the Fermilab Booster

41   0   0.0 ( 0 )
 نشر من قبل Alexahin, Yuri I.
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Fermilab Booster - built more than 40 years ago - operates well above the design proton beam intensity of 4x10**12 ppp. Still, the Fermilab neutrino experiments call for even higher intensity of 5.5x10**12 ppp. A multitude of intensity related effects must be overcome in order to meet this goal including suppression of coherent dipole instabilities of transverse oscillations which manifest themselves as a sudden drop in the beam current. In this report we present the results of observation of these instabilities at different tune, coupling and chromaticity settings and discuss possible cures.

قيم البحث

اقرأ أيضاً

The development of magnetic cogging is part of the Fermilab Booster upgrade within the Proton Improvement Plan (PIP). The Booster is going to send 2.25E17 protons/hour which is almost double the present flux, 1.4E17 protons/hour to the Main Injector (MI) and Recycler (RR). The extraction kicker gap has to synchronize to the MI and RR injection bucket in order to avoid a beam loss at the rising edge of the extraction and injection kickers. Magnetic cogging is able to control the revolution frequency and the position of the gap using the magnetic field from dipole correctors while radial position feedback keeps the beam at the central orbit. The new cogging is expected to reduce beam loss due to the orbit changes and reduce beam energy loss when the gap is created. The progress of the magnetic cogging system development is going to be discussed in this paper.
The Fermilab booster has an intensity upgrade plan called the Proton Improvement plan (PIP). The flux throughput goal is 2E17 protons/hour which is almost double the current operation at 1.1E17 protons/hour. The beam loss in the machine is going to b e an issue. The booster accelerates beam from 400 MeV to 8GeV and extracts to The Main Injector (MI). Cogging is the process that synchronizes the extraction kicker gap to the MI by changing radial position of the beam during the cycle. The gap creation occurs at about 700MeV which is 6msec into the cycle. The variation of the revolution frequency from cycle to cycle is larger at lower energy and it is hard to control by changing the radial position because of aperture limitations. Momentum cogging is able to move the gap creation earlier by using dipole correctors and radial position feedback, and controlling the revolution frequency and radial position at the same time. The new cogging is going to save energy loss and aperture. The progress of the momentum cogging system development is going to be discussed in this paper.
Detrimental beam dynamics effects limit performance of high intensity rapid cycling synchrotrons (RCS) such as the 8 GeV proton Fermilab Booster. Here we report the results of comprehensive experimental studies of various beam intensity dependent eff ects in the Booster. In the first part, we report the dependencies of the Booster beam intensity losses on the total number of protons per pulse and on key operational parameters such as the machine tunes and chromaticities. Then we cross-check two methods of the beam emittance measurements (the multi-wires proportional chambers and the ionization profile monitors). Finally we used the intensity dependent emittance growth effects to analyze the ultimate performance of the machine in present configuration, with the maximum space-charge tuneshift parameter Qsc of 0.6, and after its injection energy is upgraded from 0.4 GeV to 0.8 GeV.
At the Fermilab Booster, and many other proton facili-ties, an intense proton beam is accumulated by multi-turn injection of an H- beam through a stripping foil. The circu-lating beam scatters off the injection foil and large-angle Coulomb scattering leads to uncontrolled losses concen-trated in the first betatron period. We measure the foil scat-tering loss rate in the Fermilab Booster as a function of LINAC current, number of injection turns, and time on the injection foil. We find that current Booster operation has ~1% foil scattering loss and we make projections for the Proton Improvement Plan II (PIP-II) injector upgrade. Here we present the results from our recent beam measure-ments and a foil scattering model analyses.
In synchrotron machines, the beam extraction is accomplished by a combination of septa and kicker magnets which deflect the beam from an accelerator into another. Ideally the kicker field must rise/fall in between the beam bunches. However, in realit y, an intentional beam-free time region (aka notch) is created on the beam pulse to assure that the beam can be extracted with minimal losses. In the case of the Fermilab Booster, the notch is created in the ring near injection energy by the use of fast kickers which deposit the beam in a shielded collimation region within the accelerator tunnel. With increasing beam power it is desirable to create this notch at the lowest possible energy to minimize activation. The Fermilab Proton Improvement Plan (PIP) initiated an R&D project to build a laser system to create the notch within a linac beam pulse at 750 keV. This talk will describe the concept for the laser notcher and discuss our current status, commissioning results, and future plans.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا