ترغب بنشر مسار تعليمي؟ اضغط هنا

Escape of about five per cent of Lyman-alpha photons from high-redshift star-forming galaxies

545   0   0.0 ( 0 )
 نشر من قبل Matthew Hayes
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Lyman-alpha (Lya) emission line is the primary observational signature of star-forming galaxies at the highest redshifts, and has enabled the compilation of large samples of galaxies with which to study cosmic evolution. The resonant nature of the line, however, means that Lya photons scatter in the neutral interstellar medium of their host galaxies, and their sensitivity to absorption by interstellar dust may therefore be enhanced greatly. This implies that the Lya luminosity may be significantly reduced, or even completely suppressed. Hitherto, no unbiased empirical test of the escaping fraction (f_esc) of Lya photons has been performed at high redshifts. Here we report that the average fesc from star-forming galaxies at redshift z = 2.2 is just 5 per cent by performing a blind narrowband survey in Lya and Ha. This implies that numerous conclusions based on Lya-selected samples will require upwards revision by an order of magnitude and we provide a benchmark for this revision. We demonstrate that almost 90 per cent of star-forming galaxies emit insufficient Lya to be detected by standard selection criteria. Both samples show an anti-correlation of fesc with dust content, and we show that Lya- and Ha-selection recovers populations that differ substantially in dust content and fesc.



قيم البحث

اقرأ أيضاً

136 - Hidenobu Yajima 2012
A large number of high-redshift galaxies have been discovered via their narrow-band Lya line or broad-band continuum colors in recent years. The nature of the escaping process of photons from these early galaxies is crucial to understanding galaxy ev olution and the cosmic reionization. Here, we investigate the escape of Lya, non-ionizing UV-continuum (l = 1300 - 1600 angstrom in rest frame), and ionizing photons (l < 912 angstrom) from galaxies by combining a cosmological hydrodynamic simulation with three-dimensional multi-wavelength radiative transfer calculations. The galaxies are simulated in a box of 5^3 h^-3 Mpc^3 with high resolutions using the Aquila initial condition which reproduces a Milky Way-like galaxy at redshift z=0. We find that the escape fraction (fesc) of these different photons shows a complex dependence on redshift and galaxy properties: fesc(Lya) and fesc(UV) appear to evolve with redshift, and they show similar, weak correlations with galaxy properties such as mass, star formation, metallicity, and dust content, while fesc(Ion) remains roughly constant at ~ 0.2 from z ~ 0 - 10, and it does not show clear dependence on galaxy properties. fesc(Lya) correlates more strongly with fesc(UV) than with fesc(Ion). In addition, we find a relation between the emergent Lya luminosity and the ionizing photon emissivity of Lyman Alpha Emitters (LAEs). By combining this relation with the observed luminosity functions of LAEs at different redshift, we estimate the contribution from LAEs to the reionization of intergalactic medium (IGM). Our result suggests that ionizing photons from LAEs alone are not sufficient to ionize IGM at z > 6, but they can maintain the ionization of IGM at z ~ 0 - 5.
Lyman-alpha (Ly{alpha}) photons from ionizing sources and cooling radiation undergo a complex resonant scattering process that generates unique spectral signatures in high-redshift galaxies. We present a detailed Ly{alpha} radiative transfer study of a cosmological zoom-in simulation from the Feedback In Realistic Environments (FIRE) project. We focus on the time, spatial, and angular properties of the Ly{alpha} emission over a redshift range of z = 5-7, after escaping the galaxy and being transmitted through the intergalactic medium (IGM). Over this epoch, our target galaxy has an average stellar mass of $M_{rm star} approx 5 times 10^8 {rm M}_odot$. We find that many of the interesting features of the Ly{alpha} line can be understood in terms of the galaxys star formation history. The time variability, spatial morphology, and anisotropy of Ly{alpha} properties are consistent with current observations. For example, the rest frame equivalent width has a ${rm EW}_{{rm Ly}alpha,0} > 20 {rm AA}$ duty cycle of 62% with a non-negligible number of sightlines with $> 100 {rm AA}$, associated with outflowing regions of a starburst with greater coincident UV continuum absorption, as these conditions generate redder, narrower (or single peaked) line profiles. The lowest equivalent widths correspond to cosmological filaments, which have little impact on UV continuum photons but efficiently trap Ly{alpha} and produce bluer, broader lines with less transmission through the IGM. We also show that in dense self-shielding, low-metallicity filaments and satellites Ly{alpha} radiation pressure can be dynamically important. Finally, despite a significant reduction in surface brightness with increasing redshift, Ly{alpha} detections and spectroscopy of high-$z$ galaxies with the upcoming James Webb Space Telescope is feasible.
We report the detection of the Lyman continuum (LyC) radiation of the compact star-forming galaxy (SFG) J1154+2443 observed with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope. This galaxy, at a redshift of z=0.3690, is char acterized by a high emission-line flux ratio O32=[OIII]5007/[OII]3727=11.5. The escape fraction of the LyC radiation fesc(LyC) in this galaxy is 46 per cent, the highest value found so far in low-redshift SFGs and one of the highest values found in galaxies at any redshift. The narrow double-peaked Lya emission line is detected in the spectrum of J1154+2443 with a separation between the peaks Vsep of 199 km/s, one of the lowest known for Lya-emitting galaxies, implying a high fesc(Lya). Comparing the extinction-corrected Lya/Hb flux ratio with the case B value we find fesc(Lya) = 98 per cent. Our observations, combined with previous detections in the literature, reveal an increase of O32 with increasing fesc(LyC). We also find a tight anticorrelation between fesc(LyC) and Vsep. The surface brightness profile derived from the COS acquisition image reveals a bright star-forming region in the centre and an exponential disc in the outskirts with a disc scale length alpha=1.09 kpc. J1154+2443, compared to other known low-redshift LyC leakers, is characterized by the lowest metallicity, 12+logO/H=7.65+/-0.01, the lowest stellar mass M*=10^8.20 Msun, a similar star formation rate SFR=18.9 Msun/yr and a high specific SFR of 1.2x10^-7 yr^-1.
480 - Daniel Schaerer 2014
I provide an overview about star-forming galaxies at high redshift and their physical properties. Starting from the populations of Ly-$alpha$ emitters and Lyman break galaxies, I summarize their common features and distinction. Then I summarize recen t insight onto their physical properties gained from SED models including nebular emission, and various implications from these studies on the properties of star-formation at high redshift. Finally, I present new results and an overview on the dust content and UV attenuation of $z>6$ galaxies obtained from IRAM and ALMA observations.
390 - Hakim Atek 2013
[abridged] Among the different observational techniques used to select high-redshift galaxies, the hydrogen recombination line Lyman-alpha (Lya) is of particular interest as it gives access to the measurement of cosmological quantities such as the st ar formation rate of distant galaxy populations. However, the interpretation of this line and the calibration of such observables is still subject to serious uncertainties. Therefore, it important to understand under what conditions the Lya line can be used as a reliable star formation diagnostic tool. We use a sample of 24 Lya emitters at z ~ 0.3 with an optical spectroscopic follow-up to calculate the Lya escape fraction and its dependency upon different physical properties. We also examine the reliability of Lya as a star formation rate indicator. We combine these observations with a compilation of Lya emitters selected at z = 0 - 0.3 to assemble a larger sample. The Lya escape fraction depends clearly on the dust extinction following the relation fesc(Lya) = C(Lya) x 10^(-0.4 E(B-V) k(Lya)), but with a shallower slope than previously reported, with k(Lya) ~ 6.67 and C(Lya) = 0.22. However, the correlation does not follow the expected curve for a simple dust attenuation. We explore the various mechanisms than lead to fesc(Lya) values above the continuum extinction curve, i.e. to an enhancement of the Lya output. We also observe that the strength of Lya and the escape fraction appear unrelated to the galaxy metallicity. Regarding the reliability of Lya as a star formation rate (SFR) indicator, we show that the deviation of SFR(Lya) from the true SFR (as traced by the UV continuum) is a function of the observed SFR(UV), which can be seen as the decrease of fesc(Lya) with increasing UV luminosity. Moreover, we observe a redshift-dependence of this relationship revealing the underlying evolution of fesc(Lya) with redshift.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا