ترغب بنشر مسار تعليمي؟ اضغط هنا

Study of field fluctuations and their localization in a thick braneworld generated by gravity non-minimally coupled to a scalar field with the Gauss-Bonnet term

31   0   0.0 ( 0 )
 نشر من قبل Dagoberto Malagon-Morejon DMM
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we study a scenario with a warped 5D smooth braneworld with 4D Minkowski geometry builded from bulk scalar matter non-minimally coupled to gravity with an additional Gauss-Bonnet term. We present exact solutions for the full braneworld configuration in contrast to previous results where only approximate solutions were constructed due to the highly non-linear character of the relevant differential equations. These solutions allow us to study the necessary conditions for the finiteness of the 4D Planck mass and additionally, enables us to perform a more rigorous analysis of 4D gravity localization compared to approximate approaches. It is remarkable that all the constructed braneworld configurations lead to standard 4D gravity localization since they contain a localized massless tensor mode (the graviton). We also analyze the localization properties of scalar, vector and tensor fluctuation modes for the constructed field configurations. We show that for the considered backgrounds, only the massless tensor mode, i.e. the 4D graviton, is localized on the brane, while the vector and scalar modes are not confined to the brane.

قيم البحث

اقرأ أيضاً

We show that the combined minimal and non minimal interaction with the gravitational field may produce the generation of a cosmological constant without self-interaction of the scalar field. In the same vein we analyze the existence of states of a sc alar field that by a combined interaction of minimal and non minimal coupling with the gravitational field can exhibit an unexpected property, to wit, they are acted on by the gravitational field but do not generate gravitational field. In other words, states that seems to violate the action-reaction principle. We present explicit examples of this situation in the framework of a spatially isotropic and homogeneous universe.
62 - J.-F. Dufaux 2004
Braneworld inflation is a phenomenology related to string theory that describes high-energy modifications to general relativistic inflation. The observable universe is a braneworld embedded in 5-dimensional anti de Sitter spacetime. Whe the 5-dimensi onal action is Einstein-Hilbert, we have a Randall-Sundrum type braneworld. The amplitude of tensor and scalar perturbations from inflation is strongly increased relative to the standard results, although the ratio of tensor to scalar amplitudes still obeys the standard consistency relation. If a Gauss-Bonnet term is included in the action, as a high-energy correction motivated by string theory, we show that there are important changes to the Randall-Sundrum case. We give an exact analysis of the tensor perturbations. They satisfy the same wave equation and have the same spectrum as in the Randall-Sundrum case, but the Gauss-Bonnet change to the junction conditions leads to a modified amplitude of gravitational waves. The amplitude is no longer monotonically increasing with energy scale, but decreases asymptotically after an initial rise above the standard level. Using an approximation that neglects bulk effects, we show that the amplitude of scalar perturbations has a qualitatively similar behaviour to the tensor amplitude. In addition, the tensor to scalar ratio breaks the standard consistency relation.
We study inflationary models with a Gauss-Bonnet term to reconstruct the scalar field potentials and the Gauss-Bonnet coupling functions from the observable quantities. Using the observationally favored relations for both $n_s$ and $r$, we derive the expressions for both the scalar field potentials and the coupling functions. The implication of the blue-tilted spectrum, $n_t>0$, of the primordial tensor fluctuations is discussed for the reconstructed configurations of the scalar field potential and the Gauss-Bonnet coupling.
We show that the action of Einsteins gravity with a scalar field coupled in a generic way to spacetime curvature is invariant under a particular set of conformal transformations. These transformations relate dual theories for which the effective coup lings of the theory are scaled uniformly. In the simplest case, this class of dualities reduce to the S-duality of low-energy effective action of string theory.
We discuss the cosmological evolution of a braneworld in five dimensional Gauss-Bonnet gravity. Our discussion allows the fifth (bulk) dimension to be space-like as well as time-like. The resulting equations of motion have the form of a cubic equatio n in the (H^2,(rho+sigma)^2) plane, where sigma is the brane tension and rho is the matter density. This allows us to conduct a comprehensive pictorial analysis of cosmological evolution for the Gauss-Bonnet brane. The many interesting properties of this braneworld include the possibility of accelerated expansion at late times. For a finite region in parameter space the accelerated expansion can be phantom-like so that w < -1. At late times, this branch approaches de Sitter space (w = -1) and avoids the big-rip singularities usually present in phantom models. For a time-like extra dimension the Gauss-Bonnet brane can bounce and avoid the initial singularity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا