ﻻ يوجد ملخص باللغة العربية
The $phi_{eta}^{*}$ distribution of the $Z/gamma^{*} rightarrow ell^{+}ell^{-}$ production in hadron collisions is simulated using a leading-order event generator, GR@PPA. The initial-state parton shower, which simulates the multiple QCD-radiation effects in the initial state, plays the dominant role in this simulation. The simulation in the default setting agrees with the high-statistics measurement by ATLAS at LHC with the precision at the level of 5%. The observed systematic deviation, which can be attributed to the effects of ignored higher-order contributions, can be reduced by adjusting the arbitrary energy scales in the simulation. The agreement at the level of 1% can be achieved over a very wide range without introducing any modification in the implemented naive leading-logarithmic parton shower.
The initial-state jet matching method introduced in our previous studies has been applied to the event generation of single $W$ and $Z$ production processes and diboson ($W^{+}W^{-}$, $WZ$ and $ZZ$) production processes at hadron collisions in the fr
We have developed an event generator for direct-photon production in hadron collisions, including associated two-jet production in the framework of the GR@PPA event generator. The event generator consistently combines $gamma$ + 2-jet production proce
The production of vector boson tagged heavy quark jets provides potentially new tools to study jet quenching, especially the mass hierarchy of parton energy loss. In this work, we present the first theoretical study on $Z^0,+,$b-jet in heavy-ion coll
An event generator for diphoton ($gammagamma$) production in hadron collisions that includes associated jet production up to two jets has been developed using a subtraction method based on the LLL subtraction. The parton shower (PS) simulation to res
We present the Higgs boson production cross section at Hadron colliders in the gluon fusion production mode through N3LO in perturbative QCD. Specifically, we work in an effective theory where the top quark is assumed to be infinitely heavy and all o