ترغب بنشر مسار تعليمي؟ اضغط هنا

Precise simulation of the initial-state QCD activity associated with $Z$-boson production in hadron collisions

106   0   0.0 ( 0 )
 نشر من قبل Shigeru Odaka
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English
 تأليف Shigeru Odaka




اسأل ChatGPT حول البحث

The $phi_{eta}^{*}$ distribution of the $Z/gamma^{*} rightarrow ell^{+}ell^{-}$ production in hadron collisions is simulated using a leading-order event generator, GR@PPA. The initial-state parton shower, which simulates the multiple QCD-radiation effects in the initial state, plays the dominant role in this simulation. The simulation in the default setting agrees with the high-statistics measurement by ATLAS at LHC with the precision at the level of 5%. The observed systematic deviation, which can be attributed to the effects of ignored higher-order contributions, can be reduced by adjusting the arbitrary energy scales in the simulation. The agreement at the level of 1% can be achieved over a very wide range without introducing any modification in the implemented naive leading-logarithmic parton shower.



قيم البحث

اقرأ أيضاً

The initial-state jet matching method introduced in our previous studies has been applied to the event generation of single $W$ and $Z$ production processes and diboson ($W^{+}W^{-}$, $WZ$ and $ZZ$) production processes at hadron collisions in the fr amework of the GR@PPA event generator. The generated events reproduce the transverse momentum spectra of weak bosons continuously in the entire kinematical region. The matrix elements (ME) for hard interactions are still at the tree level. As in previo
We have developed an event generator for direct-photon production in hadron collisions, including associated two-jet production in the framework of the GR@PPA event generator. The event generator consistently combines $gamma$ + 2-jet production proce sses with the lowest-order $gamma$ + jet and photon-radiation (fragmentation) processes from QCD 2-jet production using a subtraction method. The generated events can be fed to general-purpose event generators to facilitate the addition of hadronization and decay simulations. Using the obtained event information, we can simulate photon isolation and hadron-jet reconstruction at the particle (hadron) level. The simulation reasonably reproduces measurement data obtained at the LHC concerning not only the inclusive photon spectrum, but also the correlation between the photon and jet. The simulation implies that the contribution of the $gamma$ + 2-jet is very large, especially in low photon-$p_{T}$ ($lesssim$ 50 GeV) regions. Discrepancies observed at low $p_{T}$, although marginal, may indicate the necessity for the consideration of further higher-order processes. Unambiguous particle-level definition of the photon-isolation condition for the signal events is desired to be given explicitly in future measurements.
71 - Sa Wang , Wei Dai , Ben-Wei Zhang 2020
The production of vector boson tagged heavy quark jets provides potentially new tools to study jet quenching, especially the mass hierarchy of parton energy loss. In this work, we present the first theoretical study on $Z^0,+,$b-jet in heavy-ion coll isions. Firstly utilizing a Monte Carlo transport model, our simulations give nice descriptions of the azimuthal angle correlation $Deltaphi_{jZ}$, transverse momentum imbalance $x_{jZ}$ for $Z^0,+,$jet as well as the nuclear modification factor $R_{AA}$ of inclusive b-jet in Pb+Pb collisions. Then we calculate the azimuthal angular correlation $Deltaphi_{bZ}$ of $Z^0,+,$b-jet and $Deltaphi_{bb}$ of $Z^0,+,2,$b-jets in central Pb+Pb collisions at $sqrt{s_{NN}}=$~5.02 TeV. We find that the medium modification of the azimuthal angular correlation for $Z^0,+,$b-jet has a weaker dependence on $Deltaphi_{bZ}$, as compared to that for $Z^0,+,$jet. With the high purity of quark jet in $Z^0,+,$(b-)jet production, we calculate the momentum imbalance distribution of $x_{bZ}$ of $Z^0,+,$b-jet in Pb+Pb collisions. We observe a smaller shifting of the mean value of momentum imbalance for $Z^0,+,$b-jet in Pb+Pb collisions $Deltaleftlangle x_{bZ} rightrangle$, as compared to that for $Z^0,+,$jet. In addition, we investigate the nuclear modification factors of tagged jet cross sections $I_{AA}$, and show a much stronger suppression of $I_{AA}$ in $Z^0,+,$jet than that of $Z^0,+,$b-jet in central Pb+Pb collisions.
An event generator for diphoton ($gammagamma$) production in hadron collisions that includes associated jet production up to two jets has been developed using a subtraction method based on the LLL subtraction. The parton shower (PS) simulation to res tore the subtracted divergent components involves both QED and QCD radiation, and QED radiation at very small $Q^{2}$ are simulated by referring to a fragmentation function (FF). The PS/FF simulation has the ability to enforce the radiation of a given number of energetic photons. The generated events can be fed to PYTHIA to obtain particle (hadron)-level event information, which enables us to perform realistic simulations of photon isolation and hadron-jet reconstruction. The simulated events, in which the loop-mediated $gg rightarrow gammagamma$ process is involved, reasonably reproduce the diphoton kinematics measured at the LHC. Using the developed simulation, we found that the 2-jet processes significantly contribute to diphoton production. A large 2-jet contribution can be considered as a common feature in electroweak-boson production in hadron collisions although the reason is yet to be understood. Discussion concerning the treatment of the underlying events in photon isolation is necessary for future higher precision measurements.
We present the Higgs boson production cross section at Hadron colliders in the gluon fusion production mode through N3LO in perturbative QCD. Specifically, we work in an effective theory where the top quark is assumed to be infinitely heavy and all o ther quarks are considered to be massless. Our result is the first exact formula for a partonic hadron collider cross section at N3LO in perturbative QCD. Furthermore, this result represents the first analytic computation of a hadron collider cross section involving elliptic integrals. We derive numerical predictions for the Higgs boson cross section at the LHC. Previously this result was approximated by an expansion of the cross section around the production threshold of the Higgs boson and we compare our findings. Finally, we study the impact of our new result on the state of the art prediction for the Higgs boson cross section at the LHC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا