ترغب بنشر مسار تعليمي؟ اضغط هنا

Very Long Baseline Array Imaging of Parsec-scale Radio Emissions in Nearby Radio-quiet Narrow-line Seyfert 1 Galaxies

146   0   0.0 ( 0 )
 نشر من قبل Akihiro Doi
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We conducted Very Long Baseline Array (VLBA) observations of seven nearby narrow-line Seyfert 1 (NLS1) galaxies at 1.7 GHz (18cm) with milli-arcsecond resolution. This is the first systematic very long baseline interferometry (VLBI) study focusing on the central parsec-scale regions of radio-quiet NLS1s. Five of the seven were detected at a brightness temperature of >~5x10^6 K and contain radio cores with high brightness temperatures of >6x10^7 K, indicating a nonthermal process driven by jet-producing central engines as is observed in radio-loud NLS1s and other active galactic nucleus (AGN) classes. VLBA images of MRK 1239, MRK 705, and MRK 766 exhibit parsec-scale jets with clear linear structures. A large portion of the radio power comes from diffuse emission components that are distributed within the nuclear regions (<~300 pc), which is a common characteristic throughout the observed NLS1s. Jet kinetic powers limited by the Eddington limit may be insufficient to allow the jets escape to kiloparsec scales for these radio-quiet NLS1s with low-mass black holes of <~10^7 M_sun.



قيم البحث

اقرأ أيضاً

We conducted a high-sensitivity radio detection survey for forty narrow-line Seyfert 1 (NLS1) galaxies using very-long-baseline interferometry (VLBI) at 22 GHz through phase-referencing long-time integration and using a newly developing recorder with a data rate of 8 Gbps, which is a candidate of the next generation VLBI data recording systems for the Japanese VLBI Network. The baseline sensitivity was typically a few mJy. The observations resulted in a detection rate of 12/40 for our radio-selected NLS1 sample; 11 out of the detected 12 NLS1s showed inverted radio spectra between 1.4 and 22 GHz on the basis of the Very Large Array flux densities and the VLBI detections. These high fractions suggest that a compact radio core with a high brightness temperature is frequently associated with NLS1 nuclei. On the other hand, at least half of the sample indicated apparently steep spectra even with the limited VLBI sensitivity. Both the inverted and steep spectrum radio sources are included in the NLS1 population.
121 - J. L. Richards 2014
Several narrow-line Seyfert 1 galaxies (NLS1s) have now been detected in gamma rays, providing firm evidence that at least some of this class of active galactic nuclei (AGN) produce relativistic jets. The presence of jets in NLS1s is surprising, as t hese sources are typified by comparatively small black hole masses and near- or super-Eddington accretion rates. This challenges the current understanding of the conditions necessary for jet production. Comparing the properties of the jets in NLS1s with those in more familiar jetted systems is thus essential to improve jet production models. We present early results from our campaign to monitor the kinematics and polarization of the parsec-scale jets in a sample of 15 NLS1s through multifrequency observations with the Very Long Baseline Array. These observations are complemented by fast-cadence 15 GHz monitoring with the Owens Valley Radio Observatory 40m telescope and optical spectroscopic monitoring with with the 2m class telescope at the Guillermo Haro Astrophysics Observatory in Cananea, Mexico.
129 - S. Chen , E. Jarvela , L. Crepaldi 2020
We present the results of new radio observations carried out with the Karl G. Jansky Very Large Array C-configuration at 5.5 GHz for a sample of southern narrow-line Seyfert 1 galaxies (NLS1s). This work increases the number of known radio-detected N LS1s in the southern hemisphere, and confirms that the radio emission of NLS1s is mainly concentrated in a central region at kpc-scale and only a few sources show diffuse emission. In radio-quiet NLS1s, the radio luminosity tends to be higher in steep-spectrum sources and be lower in flat-spectrum sources, which is opposite to radio-loud NLS1s. This may be because the radio emission of steep NLS1s is dominated by misaligned jets, AGN-driven outflows, or star formation superposing on a compact core. Instead the radio emission of flat NLS1s may be produced by a central core which has not yet developed radio jets and outflows. We discover new NLS1s harboring kpc-scale radio jets and confirm that a powerful jet does not require a large-mass black hole to be generated. We also find sources dominated by star formation. These NLS1s could be new candidates in investigating the radio emission of different mechanisms.
We have discovered kiloparsec-scale extended radio emission in three narrow-line Seyfert 1 galaxies (NLS1s) in sub-arcsecond resolution 9 GHz images from the Karl G. Jansky Very Large Array (VLA). We find all sources show two-sided, mildly core-domin ated jet structures with diffuse lobes dominated by termination hotspots. These span 20-70 kpc with morphologies reminiscent of FR II radio galaxies, while the extended radio luminosities are intermediate between FR I and FR II sources. In two cases the structure is linear, while a $45^{circ}$ bend is apparent in the third. Very Long Baseline Array images at 7.6 GHz reveal parsec-scale jet structures, in two cases with extended structure aligned with the inner regions of the kiloparsec-scale jets. Based on this alignment, the ratio of the radio core luminosity to the optical luminosity, the jet/counter-jet intensity and extension length ratios, and moderate core brightness temperatures ($lesssim10^{10}$ K), we conclude these jets are mildly relativistic ($betalesssim0.3$, $deltasim1$-$1.5$) and aligned at moderately small angles to the line of sight (10-15$^{circ}$). The derived kinematic ages of $sim10^6$-$10^7$ y are much younger than radio galaxies but comparable to other NLS1s. Our results increase the number of radio-loud NLS1s with known kiloparsec-scale extensions from seven to ten and suggest that such extended emission may be common, at least among the brightest of these sources.
81 - K. E. Gabanyi , A. Moor , S. Frey 2018
Most of the radio-loud narrow-line Seyfert 1 (NLS1) galaxies resemble compact steep-spectrum sources. However, the extremely radio-loud ones show blazar-like characteristics, like flat radio spectra, compact radio cores, substantial variability and h igh brightness temperatures. These objects are thought to be similar to blazars as they possess relativistic jets seen at small angle to the line of sight. This claim has been further supported by the Fermi satellite discovery of gamma-ray emission from a handful of these sources. Using the Wide-Field Infrared Survey Explorer (WISE) data, we analyzed the mid-infrared variability characteristics of $42$ radio-loud NLS1 at $3.4$ and $4.6,mu$m. We found that $27$ out of the studied $42$ sources showed variability in at least one of the two infrared bands. In some cases, significant changes in the infrared colors can alter the location of the source in the WISE color-color diagram which might lead to different classification. More than $60$% of the variable sources also showed variability within a $1-1.5$ day interval. Such short time scales argue for a compact emission region like those associated with the jets. This connection is further strengthened by the fact that the brightest $gamma$-ray emitters of the sample ($6$ sources), all showed short time scale infrared variability.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا