ترغب بنشر مسار تعليمي؟ اضغط هنا

Gyrokinetic Studies of Microinstabilities in the RFP

501   0   0.0 ( 0 )
 نشر من قبل Daniel Carmody
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An analytic equilibrium, the Toroidal Bessel Function Model, is used in conjunction with the gyrokinetic code GYRO to investigate the nature of microinstabilities in a reversed field pinch (RFP) plasma. The effect of the normalized electron plasma pressure ({beta}) on the characteristics of the microinstabilities is studied. A transition between an ion temperature gradient (ITG) driven mode and a microtearing mode as the dominant instability is found to occur at a {beta} value of approximately 4.5%. Suppression of the ITG mode occurs as in the tokamak, through coupling to shear Alfven waves, with a critical {beta} for stability higher than its tokamak equivalent due to a shorter parallel connection length. There is a steep dependence of the microtearing growth rate on temperature gradient suggesting high profile stiffness. There is evidence for a collisionless microtearing mode. The properties of this mode are investigated, and it is found that curvature drift plays an important role in the instability.



قيم البحث

اقرأ أيضاً

The nonlinear gyrokinetic code GS2 has been extended to treat non-axisymmetric stellarator geometry. Electromagnetic perturbations and multiple trapped particle regions are allowed. Here, linear, collisionless, electrostatic simulations of the quasi- axisymmetric, three-field period National Compact Stellarator Experiment (NCSX) design QAS3-C82 have been successfully benchmarked against the eigenvalue code FULL. Quantitatively, the linear stability calculations of GS2 and FULL agree to within ~10%.
A linear gyrokinetic particle-in-cell scheme, which is valid for arbitrary perpendicular wavelength $k_perprho_i$ and includes the parallel dynamic along the field line, is developed to study the local electrostatic drift modes in point and ring dipo le plasmas. We find the most unstable mode in this system can be either electron mode or ion mode. The properties and relations of these modes are studied in detail as a function of $k_perprho_i$, the density gradient $kappa_n$, the temperature gradient $kappa_T$, electron to ion temperature ratio $tau=T_e/T_i$, and mass ratio $m_i/m_e$. For conventional weak gradient parameters, the mode is on ground state (with eigenstate number $l=0$) and especially $k_parallelsim0$ for small $k_perprho_i$. Thus, bounce averaged dispersion relation is also derived for comparison. For strong gradient and large $k_perprho_i$, most interestingly, higher order eigenstate modes with even (e.g., $l=2,4$) or odd (e.g., $l=1$) parity can be most unstable, which is not expected by previous studies. High order eigenstate can also easily be most unstable at weak gradient when $tau>10$. This work can be particularly important to understand the turbulent transport in laboratory and space magnetosphere.
The gyrokinetic turbulence code GS2 was used to investigate the effects of plasma beta on linear, collisionless ion temperature gradient (ITG) modes and trapped electron modes (TEM) in National Compact Stellarator Experiment (NCSX) geometry. Plasma b eta affects stability in two ways: through the equilibrium and through magnetic fluctuations. The first was studied here by comparing ITG and TEM stability in two NCSX equilibria of differing beta values, revealing that the high beta equilibrium was marginally more stable than the low beta equilibrium in the adiabatic-electron ITG mode case. However, the high beta case had a lower kinetic-electron ITG mode critical gradient. Electrostatic and electromagnetic ITG and TEM mode growth rate dependencies on temperature gradient and density gradient were qualitatively similar. The second beta effect is demonstrated via electromagnetic ITG growth rates dependency on GS2s beta input parameter. A linear benchmark with gyrokinetic codes GENE and GKV-X is also presented.
Turbulence induced by the ion temperature gradient (ITG) is investigated in the helical and axisymmetric plasma states of a reversed field pinch device by means of gyrokinetic calculations. The two magnetic configurations are systematically compared, both linearly and nonlinearly, in order to evaluate the impact of the geometry on the instability and its ensuing transport, as well as on the production of zonal flows. Despite its enhanced confinement, the high-current helical state demonstrates a lower ITG stability threshold compared to the axisymmetric state, and ITG turbulence is expected to become an important contributor to the total heat transport.
Microinstabilities exhibit a rich variety of behavior in stellarators due to the many degrees of freedom in the magnetic geometry. It has recently been found that certain stellarators (quasi-isodynamic ones with maximum-$J$ geometry) are partly resil ient to trapped-particle instabilities, because fast-bouncing particles tend to extract energy from these modes near marginal stability. In reality, stellarators are never perfectly quasi-isodynamic, and the question thus arises whether they still benefit from enhanced stability. Here the stability properties of Wendelstein 7-X and a more quasi-isodynamic configuration, QIPC, are investigated numerically and compared with the National Compact Stellarator Experiment (NCSX) and the DIII-D tokamak. In gyrokinetic simulations, performed with the gyrokinetic code GENE in the electrostatic and collisionless approximation, ion-temperature-gradient modes, trapped-electron modes and mixed-type instabilities are studied. Wendelstein 7-X and QIPC exhibit significantly reduced growth rates for all simulations that include kinetic electrons, and the latter are indeed found to be stabilizing in the energy budget. These results suggest that imperfectly optimized stellarators can retain most of the stabilizing properties predicted for perfect maximum-$J$ configurations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا