ترغب بنشر مسار تعليمي؟ اضغط هنا

The Luminosities of Protostars in the Spitzer c2d and Gould Belt Legacy Clouds

145   0   0.0 ( 0 )
 نشر من قبل Michael Dunham
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by the long-standing luminosity problem in low-mass star formation whereby protostars are underluminous compared to theoretical expectations, we identify 230 protostars in 18 molecular clouds observed by two Spitzer Space Telescope Legacy surveys of nearby star-forming regions. We compile complete spectral energy distributions, calculate Lbol for each source, and study the protostellar luminosity distribution. This distribution extends over three orders of magnitude, from 0.01 Lsun - 69 Lsun, and has a mean and median of 4.3 Lsun and 1.3 Lsun, respectively. The distributions are very similar for Class 0 and Class I sources except for an excess of low luminosity (Lbol < 0.5 Lsun) Class I sources compared to Class 0. 100 out of the 230 protostars (43%) lack any available data in the far-infrared and submillimeter (70 um < wavelength < 850 um) and have Lbol underestimated by factors of 2.5 on average, and up to factors of 8-10 in extreme cases. Correcting these underestimates for each source individually once additional data becomes available will likely increase both the mean and median of the sample by 35% - 40%. We discuss and compare our results to several recent theoretical studies of protostellar luminosities and show that our new results do not invalidate the conclusions of any of these studies. As these studies demonstrate that there is more than one plausible accretion scenario that can match observations, future attention is clearly needed. The better statistics provided by our increased dataset should aid such future work.



قيم البحث

اقرأ أيضاً

We present Spitzer IRAC (2.1 sq. deg.) and MIPS (6.5 sq. deg.) observations of star formation in the Ophiuchus North molecular clouds. This fragmentary cloud complex lies on the edge of the Sco-Cen OB association, several degrees to the north of the well-known rho Oph star-forming region, at an approximate distance of 130 pc. The Ophiuchus North clouds were mapped as part of the Spitzer Gould Belt project under the working name `Scorpius. In the regions mapped, selected to encompass all the cloud with visual extinction AV>3, eleven Young Stellar Object (YSO) candidates are identified, eight from IRAC/MIPS colour-based selection and three from 2MASS K/MIPS colours. Adding to one source previously identified in L43 (Chen et al. 2009), this increases the number of YSOcs identified in Oph N to twelve. During the selection process, four colour-based YSO candidates were rejected as probable AGB stars and one as a known galaxy. The sources span the full range of YSOc classifications from Class 0/1 to Class III, and starless cores are also present. Twelve high-extinction (AV>10) cores are identified with a total mass of approx. 100 solar masses. These results confirm that there is little ongoing star formation in this region (instantaneous star formation efficiency <0.34%) and that the bottleneck lies in the formation of dense cores. The influence of the nearby Upper Sco OB association, including the 09V star zeta Oph, is seen in dynamical interactions and raised dust temperatures but has not enhanced levels of star formation in Ophiuchus North.
147 - Jason M. Kirk 2009
We present Spitzer IRAC (~2 deg^2) and MIPS (~8 deg^2) observations of the Cepheus Flare which is associated with the Gould Belt, at an approximate distance of ~300 pc. Around 6500 sources are detected in all four IRAC bands, of which ~900 have MIPS 24 micron detections. We identify 133 YSO candidates using color-magnitude diagram techniques, a large number of the YSO candidates are associated with the NGC 7023 reflection nebula. Cross identifications were made with the Guide Star Catalog II and the IRAS Faint Source Catalog, and spectral energy distributions (SED) were constructed. SED modeling was conducted to estimate the degree of infrared excess. It was found that a large majority of disks were optically thick accreting disks, suggesting that there has been little disk evolution in these sources. Nearest-neighbor clustering analysis identified four small protostellar groups (L1228, L1228N, L1251A, and L1251B) with 5-15 members each and the larger NGC 7023 association with 32 YSO members. The star formation efficiency for cores with clusters of protostars and for those without clusters was found to be ~8% and ~1% respectively. The cores L1155, L1241, and L1247 are confirmed to be starless down to our luminosity limit of L_bol=0.06 L_sol.
The Gould Belt Legacy Survey will map star-forming regions within 500 pc, using HARP (Heterodyne Array Receiver Programme), SCUBA-2 (Submillimetre Common-User Bolometer Array 2) and POL-2 (Polarimeter 2) on the James Clerk Maxwell Telescope (JCMT). T his paper describes HARP observations of the J = 3-2 transitions of 13CO and C18O towards Orion A. The 1500-resolution observations cover 5 pc of the Orion filament, including OMC1 (inc. BN-KL and Orion Bar), OMC 2/3 and OMC 4, and allow a comparative study of the molecular gas properties throughout the star-forming cloud. The filament shows a velocity gradient of ~1 km/s /pc between OMC 1, 2 and 3, and high velocity emission is detected in both isotopologues. The Orion Nebula and Bar have the largest masses and line widths, and dominate the mass and energetics of the high velocity material. Compact, spatially resolved emission from CH3CN, 13CH3OH, SO, HCOOCH3, C2H5OH, CH3CHO and CH3OCHO is detected towards the Orion Hot Core. The cloud is warm, with a median excitation temperature of ~24 K; the Orion Bar has the highest excitation temperature gas, at >80 K. The C18O excitation temperature correlates well with the dust temperature (to within 40%). The C18O emission is optically thin, and the 13CO emission is marginally optically thick; despite its high mass, OMC 1 shows the lowest opacities. A virial analysis indicates that Orion A is too massive for thermal or turbulent support, but is consistent with a model of a filamentary cloud that is threaded by helical magnetic fields. The variation of physical conditions across the cloud is reflected in the physical characteristics of the dust cores....continued
We present observations of the Auriga-California Molecular Cloud (AMC) at 3.6, 4.5, 5.8, 8.0, 24, 70 and 160 micron observed with the IRAC and MIPS detectors as part of the Spitzer Gould Belt Legacy Survey. The total mapped areas are 2.5 sq-deg with IRAC and 10.47 sq-deg with MIPS. This giant molecular cloud is one of two in the nearby Gould Belt of star-forming regions, the other being the Orion A Molecular Cloud (OMC). We compare source counts, colors and magnitudes in our observed region to a subset of the SWIRE data that was processed through our pipeline. Using color-magnitude and color-color diagrams, we find evidence for a substantial population of 166 young stellar objects (YSOs) in the cloud, many of which were previously unknown. Most of this population is concentrated around the LkHalpha 101 cluster and the filament extending from it. We present a quantitative description of the degree of clustering and discuss the fraction of YSOs in the region with disks relative to an estimate of the diskless YSO population. Although the AMC is similar in mass, size and distance to the OMC, it is forming about 15 - 20 times fewer stars.
Using JCMT Gould Belt Survey data from CO J=3-2 isotopologues, we present a meta-analysis of the outflows and energetics of star-forming regions in several Gould Belt clouds. The majority of the regions are strongly gravitationally bound. There is ev idence that molecular outflows transport large quantities of momentum and energy. Outflow energies are at least 20 per cent of the total turbulent kinetic energies in all of the regions studied and greater than the turbulent energy in half of the regions. However, we find no evidence that outflows increase levels of turbulence, and there is no correlation between the outflow and turbulent energies. Even though outflows in some regions contribute significantly to maintaining turbulence levels against dissipation, this relies on outflows efficiently coupling to bulk motions. Other mechanisms (e.g. supernovae) must be the main drivers of turbulence in most if not all of these regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا