ترغب بنشر مسار تعليمي؟ اضغط هنا

The Spitzer Survey of Interstellar Clouds in the Gould Belt. VI. The Auriga-California Molecular Cloud observed with IRAC and MIPS

158   0   0.0 ( 0 )
 نشر من قبل Hannah Broekhoven-Fiene
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present observations of the Auriga-California Molecular Cloud (AMC) at 3.6, 4.5, 5.8, 8.0, 24, 70 and 160 micron observed with the IRAC and MIPS detectors as part of the Spitzer Gould Belt Legacy Survey. The total mapped areas are 2.5 sq-deg with IRAC and 10.47 sq-deg with MIPS. This giant molecular cloud is one of two in the nearby Gould Belt of star-forming regions, the other being the Orion A Molecular Cloud (OMC). We compare source counts, colors and magnitudes in our observed region to a subset of the SWIRE data that was processed through our pipeline. Using color-magnitude and color-color diagrams, we find evidence for a substantial population of 166 young stellar objects (YSOs) in the cloud, many of which were previously unknown. Most of this population is concentrated around the LkHalpha 101 cluster and the filament extending from it. We present a quantitative description of the degree of clustering and discuss the fraction of YSOs in the region with disks relative to an estimate of the diskless YSO population. Although the AMC is similar in mass, size and distance to the OMC, it is forming about 15 - 20 times fewer stars.



قيم البحث

اقرأ أيضاً

We present Spitzer IRAC (2.1 sq. deg.) and MIPS (6.5 sq. deg.) observations of star formation in the Ophiuchus North molecular clouds. This fragmentary cloud complex lies on the edge of the Sco-Cen OB association, several degrees to the north of the well-known rho Oph star-forming region, at an approximate distance of 130 pc. The Ophiuchus North clouds were mapped as part of the Spitzer Gould Belt project under the working name `Scorpius. In the regions mapped, selected to encompass all the cloud with visual extinction AV>3, eleven Young Stellar Object (YSO) candidates are identified, eight from IRAC/MIPS colour-based selection and three from 2MASS K/MIPS colours. Adding to one source previously identified in L43 (Chen et al. 2009), this increases the number of YSOcs identified in Oph N to twelve. During the selection process, four colour-based YSO candidates were rejected as probable AGB stars and one as a known galaxy. The sources span the full range of YSOc classifications from Class 0/1 to Class III, and starless cores are also present. Twelve high-extinction (AV>10) cores are identified with a total mass of approx. 100 solar masses. These results confirm that there is little ongoing star formation in this region (instantaneous star formation efficiency <0.34%) and that the bottleneck lies in the formation of dense cores. The influence of the nearby Upper Sco OB association, including the 09V star zeta Oph, is seen in dynamical interactions and raised dust temperatures but has not enhanced levels of star formation in Ophiuchus North.
We present Goulds Belt (GB) Spitzer IRAC and MIPS observations of the Lupus V and VI clouds and discuss them in combination with near-infrared (2MASS) data. Our observations complement those obtained for other Lupus clouds within the frame of the Spi tzer Core to Disk (c2d) Legacy Survey. We found 43 Young Stellar Object (YSO) candidates in Lupus V and 45 in Lupus VI, including 2 transition disks, using the standard c2d/GB selection method. None of these sources was classified as a pre-main sequence star from previous optical, near-IR and X-ray surveys. A large majority of these YSO candidates appear to be surrounded by thin disks (Class III; ~79% in Lupus V and ~87% in Lupus VI). These Class III abundances differ significantly from those observed for the other Lupus clouds and c2d/GB surveyed star-forming regions, where objects with optically thick disks (Class II) dominate the young population. We investigate various scenarios that can explain this discrepancy. In particular, we show that disk photo-evaporation due to nearby OB stars is not responsible for the high fraction of Class III objects. The gas surface densities measured for Lupus V and VI lies below the star-formation threshold (AV {eqsim}8.6 mag), while this is not the case for other Lupus clouds. Thus, few Myrs older age for the YSOs in Lupus V and VI with respect to other Lupus clouds is the most likely explanation of the high fraction of Class III objects in these clouds, while a higher characteristic stellar mass might be a contributing factor. Better constraints on the age and binary fraction of
156 - Jason M. Kirk 2009
We present Spitzer IRAC (~2 deg^2) and MIPS (~8 deg^2) observations of the Cepheus Flare which is associated with the Gould Belt, at an approximate distance of ~300 pc. Around 6500 sources are detected in all four IRAC bands, of which ~900 have MIPS 24 micron detections. We identify 133 YSO candidates using color-magnitude diagram techniques, a large number of the YSO candidates are associated with the NGC 7023 reflection nebula. Cross identifications were made with the Guide Star Catalog II and the IRAS Faint Source Catalog, and spectral energy distributions (SED) were constructed. SED modeling was conducted to estimate the degree of infrared excess. It was found that a large majority of disks were optically thick accreting disks, suggesting that there has been little disk evolution in these sources. Nearest-neighbor clustering analysis identified four small protostellar groups (L1228, L1228N, L1251A, and L1251B) with 5-15 members each and the larger NGC 7023 association with 32 YSO members. The star formation efficiency for cores with clusters of protostars and for those without clusters was found to be ~8% and ~1% respectively. The cores L1155, L1241, and L1247 are confirmed to be starless down to our luminosity limit of L_bol=0.06 L_sol.
We present 850 and 450 micron observations of the dense regions within the Auriga-California molecular cloud using SCUBA-2 as part of the JCMT Gould Belt Legacy Survey to identify candidate protostellar objects, measure the masses of their circumstel lar material (disk and envelope), and compare the star formation to that in the Orion A molecular cloud. We identify 59 candidate protostars based on the presence of compact submillimeter emission, complementing these observations with existing Herschel/SPIRE maps. Of our candidate protostars, 24 are associated with young stellar objects (YSOs) in the Spitzer and Herschel/PACS catalogs of 166 and 60 YSOs, respectively (177 unique), confirming their protostellar nature. The remaining 35 candidate protostars are in regions, particularly around LkHalpha 101, where the background cloud emission is too bright to verify or rule out the presence of the compact 70 micron emission that is expected for a protostellar source. We keep these candidate protostars in our sample but note that they may indeed be prestellar in nature. Our observations are sensitive to the high end of the mass distribution in Auriga-Cal. We find that the disparity between the richness of infrared star forming objects in Orion A and the sparsity in Auriga-Cal extends to the submillimeter, suggesting that the relative star formation rates have not varied over the Class II lifetime and that Auriga-Cal will maintain a lower star formation efficiency.
We present observations of 10.6 square degrees of the Perseus molecular cloud at 24, 70, and 160 microns with the Spitzer Space Telescope Multiband Imaging Photometer for Spitzer (MIPS). The image mosaics show prominent, complex extended emission dom inated by illuminating B stars on the East side of the cloud, and by cold filaments of 160 micron emission on the West side. Of 3950 point sources identified at 24 microns, 1141 have 2MASS counterparts. A quarter of these populate regions of the Ks vs. Ks-[24] diagram that are distinct from stellar photospheres and background galaxies, and thus are likely to be cloud members with infrared excess. Nearly half (46%) of these 24 micron excess sources are distributed outside the IC 348 and NGC 1333 clusters. NGC 1333 shows the highest fraction of stars with flat or rising spectral energy distributions (28%), while Class II SEDs are most common in IC 348. These results are consistent with previous relative age determinations for the two clusters. The intercluster region contains several tightly clumped (r~0.1 pc) young stellar aggregates whose members exhibit a wide variety of infrared spectral energy distributions characteristic of different circumstellar environments. One possible explanation is a significant age spread among the aggregate members, such that some have had time to evolve more than others. Alternatively, if the aggregate members all formed at roughly the same time, then remarkably rapid circumstellar evolution would be required to account for the association of Class I and Class III sources at ages <~1 Myr. We highlight important results for several other objects as well (full abstract in the paper).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا