ﻻ يوجد ملخص باللغة العربية
In this paper we give a brief review of the astrophysics of active galactic nuclei (AGN). After a general introduction motivating the study of AGNs, we discuss our present understanding of the inner workings of the central engines, most likely accreting black holes with masses between a million and ten billion solar masses. We highlight recent results concerning the jets (collimated outflows) of AGNs derived from X-ray observations (Chandra) of kpc-scale jets and gamma-ray observations of AGNs (Fermi, Cherenkov telescopes) with jets closely aligned with the lines of sight (blazars), and discuss the interpretation of these observations. Subsequently, we summarize our knowledge about the cosmic history of AGN formation and evolution. We conclude with a description of upcoming observational opportunities.
We investigate the physics driving the cosmic star formation (SF) history using the more than fifty large, cosmological, hydrodynamical simulations that together comprise the OverWhelmingly Large Simulations (OWLS) project. We systematically vary the
The highly energetic outflows from Active Galactic Nuclei detected in X-rays are one of the most powerful mechanisms by which the central supermassive black hole (SMBH) interacts with the host galaxy. The last two decades of high resolution X-ray spe
We present an analysis of the linear polarization of six active galactic nuclei - 0415+379 (3C~111), 0507+179, 0528+134 (OG+134), 0954+658, 1418+546 (OQ+530), and 1637+574 (OS+562). Our targets were monitored from 2007 to 2011 in the observatory-fram
Infrared (IR) luminosity is fundamental to understanding the cosmic star formation history and AGN evolution. The AKARI IR space telescope performed all sky survey in 6 IR bands (9, 18, 65, 90, 140, and 160um) with 3-10 times better sensitivity than
There are several key open questions as to the nature and origin of AGN including: 1) what initiates the active phase, 2) the duration of the active phase, and 3) the effect of the AGN on the host galaxy. Critical new insights to these can be achieve