ﻻ يوجد ملخص باللغة العربية
The highly energetic outflows from Active Galactic Nuclei detected in X-rays are one of the most powerful mechanisms by which the central supermassive black hole (SMBH) interacts with the host galaxy. The last two decades of high resolution X-ray spectroscopy with XMM and Chandra have improved our understanding of the nature of these outflowing ionized absorbers and we are now poised to take the next giant leap with higher spectral resolution and higher throughput observatories to understand the physics and impact of these outflows on the host galaxy gas. The future studies on X-ray outflows not only have the potential to unravel some of the currently outstanding puzzles in astronomy, such as the physical basis behind the MBH$-sigma$ relation, the cooling flow problem in intra-cluster medium (ICM), and the evolution of the quasar luminosity function across cosmic timescales, but also provide rare insights into the dynamics and nature of matter in the immediate vicinity of the SMBH. Higher spectral resolution ($le 0.5$ eV at $1$ keV) observations will be required to identify individual absorption lines and study the asymmetries and shifts in the line profiles revealing important information about outflow structures and their impact. Higher effective area ($ge 1000 rm ,cm^{2}$) will be required to study the outflows in distant quasars, particularly at the quasar peak era (redshift $1le zle 3$) when the AGN population was the brightest. Thus, it is imperative that we develop next generation X-ray telescopes with high spectral resolution and high throughput for unveiling the properties and impact of highly energetic X-ray outflows. A simultaneous high resolution UV + X-ray mission will encompass the crucial AGN ionizing continuum, and also characterize the simultaneous detections of UV and X-ray outflows, which map different spatial scales along the line of sight.
Outflows from active galactic nuclei (AGN) are one of the fundamental mechanisms by which the central supermassive black hole interacts with its host galaxy. Detected in $ge 50%$ of nearby AGN, these outflows have been found to carry kinetic energy t
Recent time-resolved spectral studies of a few Active Galactic Nuclei in hard X-rays revealed occultations of the X-ray primary source probably by Broad Line Region (BLR) clouds. An important open question on the structure of the circumnuclear medium
X-ray surveys have revealed a new class of active galactic nuclei (AGN) with a very low observed fraction of scattered soft X-rays, f_scat < 0.5%. Based on X-ray modeling these X-ray new-type, or low observed X-ray scattering (hereafter:low-scatterin
The central engines of Active Galactic Nuclei (AGNs) are powered by accreting supermassive black holes, and while AGNs are known to play an important role in galaxy evolution, the key physical processes occur on scales that are too small to be resolv
We present results on a systematic study of flux variability on hourly time-scales in a large sample of active galactic nuclei (AGN) in the 3-79 keV band using data from Nuclear Spectroscopic Telescope Array. Our sample consists of 4 BL Lac objects (