ترغب بنشر مسار تعليمي؟ اضغط هنا

Operational experience, improvements, and performance of the CDF Run II silicon vertex detector

112   0   0.0 ( 0 )
 نشر من قبل Satyajit Behari
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Collider Detector at Fermilab (CDF) pursues a broad physics program at Fermilabs Tevatron collider. Between Run II commissioning in early 2001 and the end of operations in September 2011, the Tevatron delivered 12 fb-1 of integrated luminosity of p-pbar collisions at sqrt(s)=1.96 TeV. Many physics analyses undertaken by CDF require heavy flavor tagging with large charged particle tracking acceptance. To realize these goals, in 2001 CDF installed eight layers of silicon microstrip detectors around its interaction region. These detectors were designed for 2--5 years of operation, radiation doses up to 2 Mrad (0.02 Gy), and were expected to be replaced in 2004. The sensors were not replaced, and the Tevatron run was extended for several years beyond its design, exposing the sensors and electronics to much higher radiation doses than anticipated. In this paper we describe the operational challenges encountered over the past 10 years of running the CDF silicon detectors, the preventive measures undertaken, and the improvements made along the way to ensure their optimal performance for collecting high quality physics data. In addition, we describe the quantities and methods used to monitor radiation damage in the sensors for optimal performance and summarize the detector performance quantities important to CDFs physics program, including vertex resolution, heavy flavor tagging, and silicon vertex trigger performance.

قيم البحث

اقرأ أيضاً

84 - A. Mastroserio 2016
The Silicon Pixel Detector (SPD) constitutes the two innermost layers of the Inner Tracking System of the ALICE experiment and it is the closest detector to the interaction point. As a vertex detector, it has the unique feature of generating a trigge r signal that contributes to the L0 trigger of the ALICE experiment. The SPD started collecting data since the very first pp collisions at LHC in 2009 and since then it has taken part in all pp, Pb-Pb and p-Pb data taking campaigns. This contribution will present the main features of the SPD, the detector performance and the operational experience, including calibration and optimization activities from Run 1 to Run 2.
A new silicon detector has been developed to provide the PHENIX experiment with precise charged particle tracking at forward and backward rapidity. The Forward Silicon Vertex Tracker (FVTX) was installed in PHENIX prior to the 2012 run period of the Relativistic Heavy Ion Collider (RHIC). The FVTX is composed of two annular endcaps, each with four stations of silicon mini-strip sensors, covering a rapidity range of $1.2<|eta|<2.2$ that closely matches the two existing PHENIX muon arms. Each station consists of 48 individual silicon sensors, each of which contains two columns of mini-strips with 75 $mu$m pitch in the radial direction and lengths in the $phi$ direction varying from 3.4 mm at the inner radius to 11.5 mm at the outer radius. The FVTX has approximately 0.54 million strips in each endcap. These are read out with FPHX chips, developed in collaboration with Fermilab, which are wire bonded directly to the mini-strips. The maximum strip occupancy reached in central Au-Au collisions is approximately 2.8%. The precision tracking provided by this device makes the identification of muons from secondary vertices away from the primary event vertex possible. The expected distance of closest approach (DCA) resolution of 200 $mu$m or better for particles with a transverse momentum of 5 GeV/$c$ will allow identification of muons from relatively long-lived particles, such as $D$ and $B$ mesons, through their broader DCA distributions.
81 - A. Bardi , A. Belloni , R. Carosi 2001
The Online Silicon Vertex Tracker is the new CDF-II level 2 trigger processor designed to reconstruct 2-D tracks within the Silicon Vertex Detector with high speed and accuracy. By performing a precise measurement of impact parameters the SVT allows tagging online B events which typically show displaced secondary vertices. Physics simulations show that this will greatly enhance the CDF-II B-physics capability. The SVT has been fully assembled and operational since the beginning of Tevatron RunII in April 2001. In this paper we briefly review the SVT design and physics motivation and then describe its performance during the early phase (April-October 2001) of run II.
The CALICE collaboration is developing calorimeters for a future linear collider, and has collected a large amount of physics data during test beam efforts. For the analysis of these data, standard software available for linear collider detector stud ies is applied. This software provides reconstruction of raw data, simulation, digitization and data management, which is based on grid tools. The data format for analysis is compatible with the general linear collider software. Moreover, existing frameworks such as Marlin are employed for the CALICE software needs. The structure and features of the software framework are reported here as well as results from the application of this software to test beam data.
87 - A. Polini , I. Brock , S. Goers 2007
In order to extend the tracking acceptance, to improve the primary and secondary vertex reconstruction and thus enhancing the tagging capabilities for short lived particles, the ZEUS experiment at the HERA Collider at DESY installed a silicon strip v ertex detector. The barrel part of the detector is a 63 cm long cylinder with silicon sensors arranged around an elliptical beampipe. The forward part consists of four circular shaped disks. In total just over 200k channels are read out using $2.9 {rm m^2}$ of silicon. In this report a detailed overview of the design and construction of the detector is given and the performance of the completed system is reviewed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا