ترغب بنشر مسار تعليمي؟ اضغط هنا

The design and performance of the ZEUS Micro Vertex detector

125   0   0.0 ( 0 )
 نشر من قبل Tobias Haas
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In order to extend the tracking acceptance, to improve the primary and secondary vertex reconstruction and thus enhancing the tagging capabilities for short lived particles, the ZEUS experiment at the HERA Collider at DESY installed a silicon strip vertex detector. The barrel part of the detector is a 63 cm long cylinder with silicon sensors arranged around an elliptical beampipe. The forward part consists of four circular shaped disks. In total just over 200k channels are read out using $2.9 {rm m^2}$ of silicon. In this report a detailed overview of the design and construction of the detector is given and the performance of the completed system is reviewed.



قيم البحث

اقرأ أيضاً

This document illustrates the technical layout and the expected performance of the Micro Vertex Detector (MVD) of the PANDA experiment. The MVD will detect charged particles as close as possible to the interaction zone. Design criteria and the optimi sation process as well as the technical solutions chosen are discussed and the results of this process are subjected to extensive Monte Carlo physics studies. The route towards realisation of the detector is outlined.
To fully exploit the HERA-II upgrade,the ZEUS experiment has installed a Micro Vertex Detector (MVD) using n-type, single-sided, silicon micro-strip sensors with capacitive charge division. The sensors have a readout pitch of 120 micrometers, with fi ve intermediate strips (20 micrometer strip pitch). The designs of the silicon sensors and of the test structures used to verify the technological parameters, are presented. Results on the electrical measurements are discussed. A total of 1123 sensors with three different geometries have been produced by Hamamatsu Photonics K.K. Irradiation tests with reactor neutrons and Co-60 photons have been performed for a small sample of sensors. The results on neutron irradiation (with a fluence of 1 x 10^{13} 1 MeV equivalent neutrons / cm^2) are well described by empirical formulae for bulk damage. The Co-60 photons (with doses up to 2.9 kGy) show the presence of generation currents in the SiO_2-Si interface, a large shift of the flatband voltage and a decrease of the hole mobility.
163 - L. Aliaga , L. Bagby , B. Baldin 2013
The MINERvA experiment is designed to perform precision studies of neutrino-nucleus scattering using $ u_mu$ and ${bar u}_mu$ neutrinos incident at 1-20 GeV in the NuMI beam at Fermilab. This article presents a detailed description of the minerva det ector and describes the {em ex situ} and {em in situ} techniques employed to characterize the detector and monitor its performance. The detector is comprised of a finely-segmented scintillator-based inner tracking region surrounded by electromagnetic and hadronic sampling calorimetry. The upstream portion of the detector includes planes of graphite, iron and lead interleaved between tracking planes to facilitate the study of nuclear effects in neutrino interactions. Observations concerning the detector response over sustained periods of running are reported. The detector design and methods of operation have relevance to future neutrino experiments in which segmented scintillator tracking is utilized.
228 - B.Dey , M.Borsato , N.Arnaud 2014
We present the final results from a novel Cherenkov imaging detector called the Focusing DIRC (FDIRC). This detector was designed as a full-scale prototype of the particle identification system for the SuperB experiment [1], and comprises 1/12 of the SuperB barrel azimuthal coverage, with partial photodetector and electronics implementation. The prototype was tested in the SLAC Cosmic Ray Telescope which provided 3-D tracking of cosmic muons with an angular resolution of ~1.5 mrad, a position resolution of 4-5 mm, a start time resolution of 70 ps, and muon tracks above ~2 GeV tagged using an iron range stack. The fused silica focusing photon camera was coupled to a full-size BaBar DIRC bar box and was read out, over part of the full coverage, by 12 Hamamatsu H8500 multi-anode photomultipliers (MaPMTs) providing 768 pixels. We used waveform digitizing electronics to read out the MaPMTs. We give a detailed description of our data analysis methods and point out limitations on the present performance. We present results that demonstrate some basic performance characteristics of this design, including: (a) single photon Cherenkov angle resolutions with and without chromatic corrections, (b) signal-to-noise (S/N) ratio between the Cherenkov peak and background, which primarily consists of ambiguities of the possible photon paths from emission along the track to a given pixel, (c) dTOP = TOP_measured - TOP_expected resolutions (with TOP being the photon Time-of-Propagation in fused silica), and (d) performance of the detector in the presence of high-rate backgrounds.
For the HERA upgrade, the ZEUS experiment has designed and installed a high precision Micro Vertex Detector (MVD) using single sided micro-strip sensors with capacitive charge division. The sensors have a readout pitch of 120 microns, with five inter mediate strips (20 micron strip pitch). An extensive test program has been carried out at the DESY-II testbeam facility. In this paper we describe the setup developed to test the ZEUS MVD sensors and the results obtained on both irradiated and non-irradiated single sided micro-strip detectors with rectangular and trapezoidal geometries. The performances of the sensors coupled to the readout electronics (HELIX chip, version 2.2) have been studied in detail, achieving a good description by a Monte Carlo simulation. Measurements of the position resolution as a function of the angle of incidence are presented, focusing in particular on the comparison between standard and newly developed reconstruction algorithms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا