ترغب بنشر مسار تعليمي؟ اضغط هنا

Gamma-Ray Burst Science in the Era of the Cherenkov Telescope Array

193   0   0.0 ( 0 )
 نشر من قبل Susumu Inoue
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We outline the science prospects for gamma-ray bursts (GRBs) with the Cherenkov Telescope Array (CTA), the next-generation ground-based gamma-ray observatory operating at energies above few tens of GeV. With its low energy threshold, large effective area and rapid slewing capabilities, CTA will be able to measure the spectra and variability of GRBs at multi-GeV energies with unprecedented photon statistics, and thereby break new ground in elucidating the physics of GRBs, which is still poorly understood. Such measurements will also provide crucial diagnostics of ultra-high-energy cosmic ray and neutrino production in GRBs, advance observational cosmology by probing the high-redshift extragalactic background light and intergalactic magnetic fields, and contribute to fundamental physics by testing Lorentz invariance violation with high precision. Aiming to quantify these goals, we present some simulated observations of GRB spectra and light curves, together with estimates of their detection rates with CTA. Although the expected detection rate is modest, of order a few GRBs per year, hundreds or more high-energy photons per burst may be attainable once they are detected. We also address various issues related to following up alerts from satellites and other facilities with CTA, as well as follow-up observations at other wavelengths. The possibility of discovering and observing GRBs from their onset including short GRBs during a wide-field survey mode is also briefly discussed.



قيم البحث

اقرأ أيضاً

The Cherenkov Telescope Array (CTA) is a forthcoming ground-based observatory for very-high-energy gamma rays. CTA will consist of two arrays of imaging atmospheric Cherenkov telescopes in the Northern and Southern hemispheres, and will combine teles copes of different types to achieve unprecedented performance and energy coverage. The Gamma-ray Cherenkov Telescope (GCT) is one of the small-sized telescopes proposed for CTA to explore the energy range from a few TeV to hundreds of TeV with a field of view $gtrsim 8^circ$ and angular resolution of a few arcminutes. The GCT design features dual-mirror Schwarzschild-Couder optics and a compact camera based on densely-pixelated photodetectors as well as custom electronics. In this contribution we provide an overview of the GCT project with focus on prototype development and testing that is currently ongoing. We present results obtained during the first on-telescope campaign in late 2015 at the Observatoire de Paris-Meudon, during which we recorded the first Cherenkov images from atmospheric showers with the GCT multi-anode photomultiplier camera prototype. We also discuss the development of a second GCT camera prototype with silicon photomultipliers as photosensors, and plans toward a contribution to the realisation of CTA.
We investigate the possibility of detection of the VHE gamma-ray counterparts to the neutrino astrophysical sources within the Neutrino Target of Opportunity (NToO) program of CTA using the populations simulated by the FIRESONG software to resemble t he diffuse astrophysical neutrino flux measured by IceCube. We derive the detection probability for different zenith angles and geomagnetic field configurations. The difference in detectability of sources between CTA-North and CTA-South for the average geomagnetic field is not substantial. We investigate the effect of a higher night-sky background and the preliminary CTA Alpha layout on the detection probability.
The Cherenkov Telescope Array, CTA, will be the major global observatory for very high energy gamma-ray astronomy over the next decade and beyond. The scientific potential of CTA is extremely broad: from understanding the role of relativistic cosmic particles to the search for dark matter. CTA is an explorer of the extreme universe, probing environments from the immediate neighbourhood of black holes to cosmic voids on the largest scales. Covering a huge range in photon energy from 20 GeV to 300 TeV, CTA will improve on all aspects of performance with respect to current instruments. The observatory will operate arrays on sites in both hemispheres to provide full sky coverage and will hence maximize the potential for the rarest phenomena such as very nearby supernovae, gamma-ray bursts or gravitational wave transients. With 99 telescopes on the southern site and 19 telescopes on the northern site, flexible operation will be possible, with sub-arrays available for specific tasks. CTA will have important synergies with many of the new generation of major astronomical and astroparticle observatories. Multi-wavelength and multi-messenger approaches combining CTA data with those from other instruments will lead to a deeper understanding of the broad-band non-thermal properties of target sources. The CTA Observatory will be operated as an open, proposal-driven observatory, with all data available on a public archive after a pre-defined proprietary period. Scientists from institutions worldwide have combined together to form the CTA Consortium. This Consortium has prepared a proposal for a Core Programme of highly motivated observations. The programme, encompassing approximately 40% of the available observing time over the first ten years of CTA operation, is made up of individual Key Science Projects (KSPs), which are presented in this document.
The Cherenkov Telescope Array (CTA) is the next generation ground-based $gamma$-ray observatory. It will provide an order of magnitude better sensitivity and an extended energy coverage, 20 GeV - 300 TeV, relative to current Imaging Atmospheric Chere nkov Telescopes (IACTs). IACTs, despite featuring an excellent sensitivity, are characterized by a limited field of view that makes the blind search of new sources very time inefficient. Fortunately, the $textit{Fermi}$-LAT collaboration recently released a new catalog of 1,556 sources detected in the 10 GeV - 2 TeV range by the Large Area Telescope (LAT) in the first 7 years of its operation (the 3FHL catalog). This catalog is currently the most appropriate description of the sky that will be energetically accessible to CTA. Here, we discuss a detailed analysis of the extragalactic source population (mostly blazars) that will be studied in the near future by CTA. This analysis is based on simulations built from the expected array configurations and information reported in the 3FHL catalog. These results show the improvements that CTA will provide on the extragalactic TeV source population studies, which will be carried out by Key Science Projects as well as dedicated proposals.
The Cherenkov Telescope Array (CTA), the new-generation ground-based observatory for $gamma$-ray astronomy, provides unique capabilities to address significant open questions in astrophysics, cosmology, and fundamental physics. We study some of the s alient areas of $gamma$-ray cosmology that can be explored as part of the Key Science Projects of CTA, through simulated observations of active galactic nuclei (AGN) and of their relativistic jets. Observations of AGN with CTA will enable a measurement of $gamma$-ray absorption on the extragalactic background light with a statistical uncertainty below 15% up to a redshift $z=2$ and to constrain or detect $gamma$-ray halos up to intergalactic-magnetic-field strengths of at least 0.3pG. Extragalactic observations with CTA also show promising potential to probe physics beyond the Standard Model. The best limits on Lorentz invariance violation from $gamma$-ray astronomy will be improved by a factor of at least two to three. CTA will also probe the parameter space in which axion-like particles could constitute a significant fraction, if not all, of dark matter. We conclude on the synergies between CTA and other upcoming facilities that will foster the growth of $gamma$-ray cosmology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا