ﻻ يوجد ملخص باللغة العربية
The Cherenkov Telescope Array (CTA), the new-generation ground-based observatory for $gamma$-ray astronomy, provides unique capabilities to address significant open questions in astrophysics, cosmology, and fundamental physics. We study some of the salient areas of $gamma$-ray cosmology that can be explored as part of the Key Science Projects of CTA, through simulated observations of active galactic nuclei (AGN) and of their relativistic jets. Observations of AGN with CTA will enable a measurement of $gamma$-ray absorption on the extragalactic background light with a statistical uncertainty below 15% up to a redshift $z=2$ and to constrain or detect $gamma$-ray halos up to intergalactic-magnetic-field strengths of at least 0.3pG. Extragalactic observations with CTA also show promising potential to probe physics beyond the Standard Model. The best limits on Lorentz invariance violation from $gamma$-ray astronomy will be improved by a factor of at least two to three. CTA will also probe the parameter space in which axion-like particles could constitute a significant fraction, if not all, of dark matter. We conclude on the synergies between CTA and other upcoming facilities that will foster the growth of $gamma$-ray cosmology.
The Cherenkov Telescope Array (CTA) is the next generation ground-based observatory for $gamma$-ray astronomy at energies above 30 GeV. Thanks to its unique capabilities, CTA observations will address a plethora of open questions in astrophysics rang
Astrophysical observations provide strong evidence that more than 80% of all matter in the Universe is in the form of dark matter (DM). Two leading candidates of particles beyond the Standard Model that could constitute all or a fraction of the DM co
The measurement of $gamma$-rays originating from active galactic nuclei offers the unique opportunity to study the propagation of very-high-energy photons over cosmological distances. Most prominently, $gamma$-rays interact with the extragalactic bac
The Cherenkov Telescope Array (CTA) is a project for a next-generation observatory for very high energy (GeV-TeV) ground-based gamma-ray astronomy, currently in its design phase, and foreseen to be operative a few years from now. Several tens of tele
We investigate the possibility of detection of the VHE gamma-ray counterparts to the neutrino astrophysical sources within the Neutrino Target of Opportunity (NToO) program of CTA using the populations simulated by the FIRESONG software to resemble t