ﻻ يوجد ملخص باللغة العربية
Although operator-valued kernels have recently received increasing interest in various machine learning and functional data analysis problems such as multi-task learning or functional regression, little attention has been paid to the understanding of their associated feature spaces. In this paper, we explore the potential of adopting an operator-valued kernel feature space perspective for the analysis of functional data. We then extend the Regularized Least Squares Classification (RLSC) algorithm to cover situations where there are multiple functions per observation. Experiments on a sound recognition problem show that the proposed method outperforms the classical RLSC algorithm.
In this paper we consider the problems of supervised classification and regression in the case where attributes and labels are functions: a data is represented by a set of functions, and the label is also a function. We focus on the use of reproducin
Given a linear regression setting, Iterative Least Trimmed Squares (ILTS) involves alternating between (a) selecting the subset of samples with lowest current loss, and (b) re-fitting the linear model only on that subset. Both steps are very fast and
We conduct a study and comparison of superiorization and optimization approaches for the reconstruction problem of superiorized/regularized least-squares solutions of underdetermined linear equations with nonnegativity variable bounds. Regarding supe
We present a new functional Bayes classifier that uses principal component (PC) or partial least squares (PLS) scores from the common covariance function, that is, the covariance function marginalized over groups. When the groups have different covar
Temporal Difference learning or TD($lambda$) is a fundamental algorithm in the field of reinforcement learning. However, setting TDs $lambda$ parameter, which controls the timescale of TD updates, is generally left up to the practitioner. We formaliz