ترغب بنشر مسار تعليمي؟ اضغط هنا

Functional Regularized Least Squares Classi cation with Operator-valued Kernels

112   0   0.0 ( 0 )
 نشر من قبل Preux Philippe
 تاريخ النشر 2013
والبحث باللغة English




اسأل ChatGPT حول البحث

Although operator-valued kernels have recently received increasing interest in various machine learning and functional data analysis problems such as multi-task learning or functional regression, little attention has been paid to the understanding of their associated feature spaces. In this paper, we explore the potential of adopting an operator-valued kernel feature space perspective for the analysis of functional data. We then extend the Regularized Least Squares Classification (RLSC) algorithm to cover situations where there are multiple functions per observation. Experiments on a sound recognition problem show that the proposed method outperforms the classical RLSC algorithm.



قيم البحث

اقرأ أيضاً

In this paper we consider the problems of supervised classification and regression in the case where attributes and labels are functions: a data is represented by a set of functions, and the label is also a function. We focus on the use of reproducin g kernel Hilbert space theory to learn from such functional data. Basic concepts and properties of kernel-based learning are extended to include the estimation of function-valued functions. In this setting, the representer theorem is restated, a set of rigorously defined infinite-dimensional operator-valued kernels that can be valuably applied when the data are functions is described, and a learning algorithm for nonlinear functional data analysis is introduced. The methodology is illustrated through speech and audio signal processing experiments.
Given a linear regression setting, Iterative Least Trimmed Squares (ILTS) involves alternating between (a) selecting the subset of samples with lowest current loss, and (b) re-fitting the linear model only on that subset. Both steps are very fast and simple. In this paper we analyze ILTS in the setting of mixed linear regression with corruptions (MLR-C). We first establish deterministic conditions (on the features etc.) under which the ILTS iterate converges linearly to the closest mixture component. We also provide a global algorithm that uses ILTS as a subroutine, to fully solve mixed linear regressions with corruptions. We then evaluate it for the widely studied setting of isotropic Gaussian features, and establish that we match or better existing results in terms of sample complexity. Finally, we provide an ODE analysis for a gradient-descent variant of ILTS that has optimal time complexity. Our results provide initial theoretical evidence that iteratively fitting to the best subset of samples -- a potentially widely applicable idea -- can provably provide state of the art performance in bad training data settings.
We conduct a study and comparison of superiorization and optimization approaches for the reconstruction problem of superiorized/regularized least-squares solutions of underdetermined linear equations with nonnegativity variable bounds. Regarding supe riorization, the state of the art is examined for this problem class, and a novel approach is proposed that employs proximal mappings and is structurally similar to the established forward-backward optimization approach. Regarding convex optimization, accelerated forward-backward splitting with inexact proximal maps is worked out and applied to both the natural splitting least-squares term/regularizer and to the reverse splitting regularizer/least-squares term. Our numerical findings suggest that superiorization can approach the solution of the optimization problem and leads to comparable results at significantly lower costs, after appropriate parameter tuning. On the other hand, applying accelerated forward-backward optimization to the reverse splitting slightly outperforms superiorization, which suggests that convex optimization can approach superiorization too, using a suitable problem splitting.
We present a new functional Bayes classifier that uses principal component (PC) or partial least squares (PLS) scores from the common covariance function, that is, the covariance function marginalized over groups. When the groups have different covar iance functions, the PC or PLS scores need not be independent or even uncorrelated. We use copulas to model the dependence. Our method is semiparametric; the marginal densities are estimated nonparametrically by kernel smoothing and the copula is modeled parametrically. We focus on Gaussian and t-copulas, but other copulas could be used. The strong performance of our methodology is demonstrated through simulation, real data examples, and asymptotic properties.
Temporal Difference learning or TD($lambda$) is a fundamental algorithm in the field of reinforcement learning. However, setting TDs $lambda$ parameter, which controls the timescale of TD updates, is generally left up to the practitioner. We formaliz e the $lambda$ selection problem as a bias-variance trade-off where the solution is the value of $lambda$ that leads to the smallest Mean Squared Value Error (MSVE). To solve this trade-off we suggest applying Leave-One-Trajectory-Out Cross-Validation (LOTO-CV) to search the space of $lambda$ values. Unfortunately, this approach is too computationally expensive for most practical applications. For Least Squares TD (LSTD) we show that LOTO-CV can be implemented efficiently to automatically tune $lambda$ and apply function optimization methods to efficiently search the space of $lambda$ values. The resulting algorithm, ALLSTD, is parameter free and our experiments demonstrate that ALLSTD is significantly computationally faster than the na{i}ve LOTO-CV implementation while achieving similar performance.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا