ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmic Ray Measurements with LOPES: Status and Recent Results (ARENA 2012)

162   0   0.0 ( 0 )
 نشر من قبل Frank Schr\\\"oder
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

LOPES is a digital antenna array at the Karlsruhe Institute of Technology, Germany, for cosmic-ray air-shower measurements. Triggered by the co-located KASCADE-Grande air-shower array, LOPES detects the radio emission of air showers via digital radio interferometry. We summarize the status of LOPES and recent results. In particular, we present an update on the reconstruction of the primary-particle properties based on almost 500 events above 100 PeV. With LOPES, the arrival direction can be reconstructed with a precision of at least 0.65{deg}, and the energy with a precision of at least 20 %, which, however, does not include systematic uncertainties on the absolute energy scale. For many particle and astrophysics questions the reconstruction of the atmospheric depth of the shower maximum, Xmax, is important, since it yields information on the type of the primary particle and its interaction with the atmosphere. Recently, we found experimental evidence that the slope of the radio lateral distribution is indeed sensitive to the longitudinal development of the air shower, but unfortunately, the Xmax precision at LOPES is limited by the high level of anthropogenic radio background. Nevertheless, the developed methods can be transferred to next generation experiments with lower background, which should provide an Xmax precision competitive to other detection technologies.



قيم البحث

اقرأ أيضاً

LOPES, the LOFAR prototype station, was an antenna array for cosmic-ray air showers operating from 2003 - 2013 within the KASCADE-Grande experiment. Meanwhile, the analysis is finished and the data of air-shower events measured by LOPES are available with open access in the KASCADE Cosmic Ray Data Center (KCDC). This article intends to provide a summary of the achievements, results, and lessons learned from LOPES. By digital, interferometric beamforming the detection of air showers became possible in the radio-loud environment of the Karlsruhe Institute of Technology (KIT). As a prototype experiment, LOPES tested several antenna types, array configurations and calibration techniques, and pioneered analysis methods for the reconstruction of the most important shower parameters, i.e., the arrival direction, the energy, and mass-dependent observables such as the position of the shower maximum. In addition to a review and update of previously published results, we also present new results based on end-to-end simulations including all known instrumental properties. For this, we applied the detector response to radio signals simulated with the CoREAS extension of CORSIKA, and analyzed them in the same way as measured data. Thus, we were able to study the detector performance more accurately than before, including some previously inaccessible features such as the impact of noise on the interferometric cross-correlation beam. These results led to several improvements, which are documented in this paper and can provide useful input for the design of future cosmic-ray experiments based on the digital radio-detection technique.
164 - Javier Rico , Robert Wagner 2009
MAGIC is a single-dish Cherenkov telescope located on La Palma (Spain), hence with an optimal view on the Northern sky. Sensitive in the 30 GeV-30 TeV energy band, it is nowadays the only ground-based instrument being able to measure high-energy gamm a-rays below 100 GeV. We review the most recent experimental results obtained using MAGIC.
We investigated the radio wavefront of cosmic-ray air showers with LOPES measurements and CoREAS simulations: the wavefront is of approximately hyperbolic shape and its steepness is sensitive to the shower maximum. For this study we used 316 events w ith an energy above 0.1 EeV and zenith angles below $45^circ$ measured by the LOPES experiment. LOPES was a digital radio interferometer consisting of up to 30 antennas on an area of approximately 200 m x 200 m at an altitude of 110 m above sea level. Triggered by KASCADE-Grande, LOPES measured the radio emission between 43 and 74 MHz, and our analysis might strictly hold only for such conditions. Moreover, we used CoREAS simulations made for each event, which show much clearer results than the measurements suffering from high background. A detailed description of our result is available in our recent paper published in JCAP09(2014)025. The present proceeding contains a summary and focuses on some additional aspects, e.g., the asymmetry of the wavefront: According to the CoREAS simulations the wavefront is slightly asymmetric, but on a much weaker level than the lateral distribution of the radio amplitude.
127 - Pasquale Blasi 2013
The last decade has been dense with new developments in the search for the sources of Galactic cosmic rays. Some of these developments have confirmed the tight connection between cosmic rays and supernovae in our Galaxy, through the detection of gamm a rays and the observation of thin non-thermal X-ray rims in supernova remnants. Some other, such as the detection of features in the spectra of some chemicals opened new questions on the propagation of cosmic rays in the Galaxy and on details of the acceleration process. Here I will summarize some of these developments and their implications for our understanding of the origin of cosmic rays. I will also discuss some new avenues that are being pursued in testing the supernova origin of Galactic cosmic rays.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا