ترغب بنشر مسار تعليمي؟ اضغط هنا

${}^3$H production via neutron-neutron-deuteron recombination

82   0   0.0 ( 0 )
 نشر من قبل Arnoldas Deltuva
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the recombination of two neutrons and deuteron into neutron and ${}^3$H using realistic nucleon-nucleon potential models. Exact Alt, Grassberger, and Sandhas equations for the four-nucleon transition operators are solved in the momentum-space framework using the complex-energy method with special integration weights. We find that at astrophysical or laboratory neutron densities the production of ${}^3$H via the neutron-neutron-deuteron recombination is much slower as compared to the radiative neutron-deuteron capture. We also calculate neutron-${}^3$H elastic and total cross sections.



قيم البحث

اقرأ أيضاً

We discuss the possibility of extracting the neutron-neutron scattering length $a_{nn}$ and effective range $r_{nn}$ from cross section data ($d^2sigma/dM_{nn}/dOmega_pi$), as a function of the $nn$ invariant mass $M_{nn}$, for $pi^+$ photoproduction on the deuteron ($gamma dto pi^+nn$). The analysis is based on a $gamma dto pi^+nn$ reaction model in which realistic elementary amplitudes for $gamma pto pi^+n$, $NNto NN$, and $pi Nto pi N$ are built in. We show that $M_{nn}$ dependence (lineshape) of a ratio $R_{rm th}$, $d^2sigma/dM_{nn}/dOmega_pi$ normalized by $dsigma/dOmega_pi$ for $gamma ptopi^+ n$ and the nucleon momentum distribution inside the deuteron, at the kinematics with $theta_pi=0^circ$ and $E_gammasim 250$ MeV is particularly useful for extracting $a_{nn}$ and $r_{nn}$ from the corresponding data $R_{rm exp}$. It is found that $R_{rm exp}$ with 2% error, resolved into the $M_{nn}$ bin width of 0.04 MeV (corresponding to the $p_pi$ bin width of 0.05 MeV$/c$), can determine $a_{nn}$ and $r_{nn}$ with uncertainties of $pm 0.21$ fm and $pm 0.06$ fm, respectively, for the case of $a_{nn}=-18.9$ fm and $r_{nn}=2.75$ fm. The requirement of such narrow bin widths indicates that the momenta of the incident photon and the emitted $pi^+$ have to be measured with high resolutions. This can be achieved by utilizing virtual photons of very small $Q^2$ from electron scattering at Mainz MAMI facility. The proposed method for determining $a_{nn}$ and $r_{nn}$ from $gamma dto pi^+ nn$ has a great experimental advantage over the previous one utilizing $pi^- dtogamma nn$ for being free from the formidable task of controlling the neutron detection efficiency and its uncertainty.
218 - Silvano Simula 1996
The production of slow nucleons in semi-inclusive deep inelastic electron scattering off the deuteron is investigated in the region $x gsim 0.3$ for kinematical conditions accessible at $HERA$. Within the spectator mechanism the semi-inclusive cross section exhibits a scaling property, which can be used as a model-independent test of the dominance of the spectator mechanism itself, providing in this way an interesting tool to investigate the neutron structure function. The possibility of extracting model-independent information on the neutron to proton structure function ratio from semi-inclusive experiments is also illustrated.
New measurements of the neutron-neutron quasifree scattering cross section in neutron-deuteron breakup at an incident neutron energy of 10.0 MeV are reported. The experiment setup was optimized to evaluate the technique for determining the integrated beam-target luminosity in neutron-neutron coincidence cross-section measurements in neutron-deuteron breakup. The measurements were carried out with a systematic uncertainty of $pm 5.6 %$. Our data are in agreement with theoretical calculations performed using the CD-Bonn nucleon-nucleon potential in the Faddeev formalism. The measured integrated cross section over the quasifree peak is $20.5 pm 0.5 text{(stat)} pm 1.1 text{(sys)}$ mb/sr$^2$ in comparison with the theory prediction of 20.1 mb/sr$^{2}$. These results validate our technique for determining the beam-target luminosity in neutron-deuteron breakup measurements.
Time reversal invariance violating (TRIV) effects for low energy elastic neutron deuteron scattering are calculated for meson exchange and EFT-type of TRIV potentials in a Distorted Wave Born Approximation, using realistic hadronic strong interaction wave functions, obtained by solving three-body Faddeev equations in configuration space. The relation between TRIV and parity violating observables are discussed.
Time reversal invariance violating parity conserving effects for low energy elastic neutron deuteron scattering are calculated for meson exchange and EFT-type of potentials in a Distorted Wave Born Approximation, using realistic hadronic wave functio ns, obtained by solving three-body Faddeev equations in configuration space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا