ﻻ يوجد ملخص باللغة العربية
We consider least squares estimators of carrier phase and amplitude from a noisy communications signal that contains both pilot signals, known to the receiver, and data signals, unknown to the receiver. We focus on signaling constellations that have symbols evenly distributed on the complex unit circle, i.e., M-ary phase shift keying. We show, under reasonably mild conditions on the distribution of the noise, that the least squares estimator of carrier phase is strongly consistent and asymptotically normally distributed. However, the amplitude estimator is not consistent, but converges to a positive real number that is a function of the true carrier amplitude, the noise distribution and the size of the constellation. Our theoretical results can also be applied to the case where no pilot symbols exist, i.e., noncoherent detection. The results of Monte Carlo simulations are provided and these agree with the theoretical results.
Reconfigurable intelligent surface (RIS)-assisted transmission and space shift keying (SSK) appear as promising candidates for future energy-efficient wireless systems. In this paper, two RIS-based SSK schemes are proposed to efficiently improve the
The study on carrier phase estimation (CPE) approaches, involving a one-tap normalized least-mean-square (NLMS) algorithm, a block-wise average algorithm, and a Viterbi-Viterbi algorithm has been carried out in the long-haul high-capacity dispersion-
Multilevel coding (MLC) is a coded modulation technique which can achieve excellent performance over a range of communication channels. Polar codes have been shown to be quite compatible with communication systems using MLC, as the rate allocation of
Phase Shift Keying on the Hypersphere (PSKH), a generalization of conventional Phase Shift Keying (PSK) for Multiple-Input Multiple-Output (MIMO) systems, is introduced. In PSKH, constellation points are distributed on a multidimensional hypersphere.
Spectrum sensing and direction of arrival (DOA) estimation have been thoroughly investigated, both separately and as a joint task. Estimating the support of a set of signals and their DOAs is crucial to many signal processing applications, such as Co