ﻻ يوجد ملخص باللغة العربية
Spectrum sensing and direction of arrival (DOA) estimation have been thoroughly investigated, both separately and as a joint task. Estimating the support of a set of signals and their DOAs is crucial to many signal processing applications, such as Cognitive Radio (CR). A challenging scenario, faced by CRs, is that of multiband signals, composed of several narrowband transmissions spread over a wide spectrum each with unknown carrier frequencies and DOAs. The Nyquist rate of such signals is high and constitutes a bottleneck both in the analog and digital domains. To alleviate the sampling rate issue, several sub-Nyquist sampling methods, such as multicoset sampling or the modulated wideband converter (MWC), have been proposed in the context of spectrum sensing. In this work, we first suggest an alternative sub-Nyquist sampling and signal reconstruction method to the MWC, based on a uniform linear array (ULA). We then extend our approach to joint spectrum sensing and DOA estimation and propose the CompreSsed CArrier and DOA Estimation (CaSCADE) system, composed of an L-shaped array with two ULAs. In both cases, we derive perfect recovery conditions of the signal parameters (carrier frequencies and DOAs if relevant) and the signal itself and provide two reconstruction algorithms, one based on the ESPRIT method and the second on compressed sensing techniques. Both our joint carriers and DOAs recovery algorithms overcome the well-known pairing issue between the two parameters. Simulations demonstrate that our alternative spectrum sensing system outperforms the MWC in terms of recovery error and design complexity and show joint carrier frequencies and DOAs from our CaSCADE systems sub-Nyquist samples.
The performance of the existing sparse Bayesian learning (SBL) methods for off-gird DOA estimation is dependent on the trade off between the accuracy and the computational workload. To speed up the off-grid SBL method while remain a reasonable accura
The direction of arrival (DOA) estimation in array signal processing is an important research area. The effectiveness of the direction of arrival greatly determines the performance of multi-input multi-output (MIMO) antenna systems. The multiple sign
In this work, we propose an alternating low-rank decomposition (ALRD) approach and novel subspace algorithms for direction-of-arrival (DOA) estimation. In the ALRD scheme, the decomposition matrix for rank reduction is composed of a set of basis vect
We consider the problem of direction-of-arrival (DOA) estimation in unknown partially correlated noise environments where the noise covariance matrix is sparse. A sparse noise covariance matrix is a common model for a sparse array of sensors consiste
A large-scale fully-digital receive antenna array can provide very high-resolution direction of arrival (DOA) estimation, but resulting in a significantly high RF-chain circuit cost. Thus, a hybrid analog and digital (HAD) structure is preferred. Two