ﻻ يوجد ملخص باللغة العربية
Trapped electron mode turbulence is studied by gyrokinetic simulations with the GYRO code and an analytical model including the effect of a poloidally varying electrostatic potential. Its impact on radial transport of high-Z trace impurities close to the core is thoroughly investigated and the dependence of the zero-flux impurity density gradient (peaking factor) on local plasma parameters is presented. Parameters such as ion-to-electron temperature ratio, electron temperature gradient and main species density gradient mainly affect the impurity peaking through their impact on mode characteristics. The poloidal asymmetry, the safety factor and magnetic shear have the strongest effect on impurity peaking, and it is shown that under certain scenarios where trapped electron modes are dominant, core accumulation of high-Z impurities can be avoided. We demonstrate that accounting for the momentum conservation property of the impurity-impurity collision operator can be important for an accurate evaluation of the impurity peaking factor.
In the present paper the transport of impurities driven by trapped electron (TE) mode turbulence is studied. Non-linear (NL) gyrokinetic simulations using the code GENE are compared with results from quasilinear (QL) gyrokinetic simulations and a com
In the present work the generation of zonal flows in collisionless trapped electron mode (TEM) turbulence is studied analytically. A reduced model for TEM turbulence is utilized based on an advanced fluid model for reactive drift waves. An analytical
The turbulent transport of main ion and trace impurities in a tokamak device in the presence of steep electron density gradients has been studied. The parameters are chosen for trapped electron (TE) mode turbulence, driven primarily by steep electron
Optimised stellarators and other magnetic-confinement devices having the property that the average magnetic curvature is favourable for all particle orbits are called maximum-$J$ devices, and have recently been shown to be immune to trapped-particle
In continuation of previous work, numerical results are presented, concerning relativistically counter-streaming plasmas. Here, the relativistic mixed mode instability evolves through, and beyond, the linear saturation -- well into the nonlinear regi