ﻻ يوجد ملخص باللغة العربية
The electron-hole symmetry in the structure graphene - insulating substrate -semiconductor gate is violated due to an asymmetrical drop of potential in the semiconductor gate under positive or negative biases. The gate voltage dependencies of concentration and conductivity are calculated for the case of SiO_2 substrate placed over low- (moderate-) doped p-Si. Similar dependencies of the optical conductivity are analyzed for the case of high-kappa substrates (AlN, Al_2O_3, HfO_2, and ZrO_2). The comparison of our results with experimental data shows a good agreement for both cases.
Graphitic nitrogen-doped graphene is an excellent platform to study scattering processes of massless Dirac fermions by charged impurities, in which high mobility can be preserved due to the absence of lattice defects through direct substitution of ca
Electron optics in the solid state promises new functionality in electronics through the possibility of realizing micrometer-sized interferometers, lenses, collimators and beam splitters that manipulate electrons instead of light. Until now, however,
We use low-temperature scanning gate microscopy (SGM) to investigate the breakdown of the quantum Hall regime in an exfoliated bilayer graphene flake. SGM images captured during breakdown exhibit intricate patterns of hotspots where the conductance i
We theoretically analyse the possibility to electrostatically confine electrons in circular quantum dot arrays, impressed on contacted graphene nanoribbons by top gates. Utilising exact numerical techniques, we compute the scattering efficiency of a
We analyze the effect of screening provided by the additional graphene layer in double layer graphene heterostructures (DLGs) on transport characteristics of DLG devices in the metallic regime. The effect of gate-tunable charge density in the additio