ترغب بنشر مسار تعليمي؟ اضغط هنا

Wicking in a powder

47   0   0.0 ( 0 )
 نشر من قبل Pascal Raux
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the wicking in granular media by considering layers of grains at the surface of a liquid, and discuss the critical contact angle below which spontaneous impregnation takes place. This angle is found to be on the order of 55{deg} for monodisperse layers, significantly smaller than 90{deg}, the threshold value for penetrating assemblies of tubes: owing to geometry, impregnating grains is more demanding than impregnating tubes. We also consider the additional effects of polydispersity and pressure on this wetting transition and discuss the corresponding shift observed on the critical contact angle.

قيم البحث

اقرأ أيضاً

The viscous drag on a slender rod by a wall is important to many biological and industrial systems. This drag critically depends on the separation between the rod and the wall and can be approximated asymptotically in specific regimes, namely far fro m, or very close to, the wall, but is typically determined numerically for general separations. In this note we determine an asymptotic representation of the local drag for a slender rod parallel to a wall which is valid for all separations. This is possible through matching the behaviour of a rod close to the wall and a rod far from the wall. We show that the leading order drag in both these regimes has been known since 1981 and that they can used to produce a composite representation of the drag which is valid for all separations. This is in contrast to a sphere above a wall, where no simple uniformly valid representation exists. We estimate the error on this composite representation as the separation increases, discuss how the results could be used as resistive-force theory and demonstrate their use on a two-hinged swimmer above a wall.
Droplets can self-propel when immersed in another liquid in which a concentration gradient is present. Here we report the experimental and numerical study of a self-propelling oil droplet in a vertically stratified ethanol/water mixture: At first, th e droplet sinks slowly due to gravity, but then, before having reached its density matched position, jumps up suddenly. More remarkably, the droplet bounces repeatedly with an ever increasing jumping distance, until all of a sudden it stops after about 30 min. We identify the Marangoni stress at the droplet/liquid interface as responsible for the jumping: its strength grows exponentially because it pulls down ethanol-rich liquid, which in turn increases its strength even more. The jumping process can repeat because gravity restores the system. Finally, the sudden death of the jumping droplet is also explained. Our findings have demonstrated a type of prominent droplet bouncing inside a continuous medium with no wall or sharp interface.
We derive an expression for the velocity profile of a pressure-driven yield-stress Bingham fluid flowing around a 2D concentric annulus. The formula requires the numerical solution of a nonlinear equation for the positions of the yield surfaces. The results allow the prediction of the effects of channel curvature on the pressure gradient required to initiate flow for given yield stress, and for the width of the plug region and the flux through the channel at different curvatures.
Three-dimensional particle tracking experiments were conducted in a turbulent boundary layer with friction Reynolds number $Re_tau$ of 700 and 1300. Two finite size spheres with specific gravities of 1.003 (P1) and 1.050 (P2) and diameters of 60 and 120 wall units were released individually from rest on a smooth wall. The spheres were marked with dots all over the surface to monitor their translation and rotation via high-speed stereoscopic imaging. The spheres accelerated strongly after release over streamwise distances of one boundary layer thickness before approaching an approximate terminal velocity. Initially, sphere P1, which had Reynolds numbers $Re_p$ of 800 and 1900, always lifts off from the wall. Similar behavior was observed occasionally for sphere P2 with initial $Re_p$ of 1900. The spheres that lifted off reached an initial peak in height before descending towards the wall. The sphere trajectories exhibited multiple behaviors including saltation, resuspension and sliding motion with small random bouncing depending on both $Re_tau$ and specific gravity. The lighter sphere at $Re_tau=1300$, which remained suspended above the wall during most of its trajectory, propagated with the fastest streamwise velocity. By contrast, the denser sphere at $Re_tau=700$, which mostly slid along the wall, propagated with the slowest streamwise velocity. After the spheres approached an approximate terminal velocity, many experienced additional lift-off events that were hypothesized to be driven by hairpins or coherent flow structures. Spheres were observed to rotate about all three coordinate axes. While the mean shear may induce a rotation about the spanwise axis, near-wall coherent structures and the spheres wake might drive the streamwise and wall-normal rotations. In all cases where the sphere propagates along the wall, sliding motion, rather than forward rolling motion, is dominant.
We consider sedimentation of a rigid helical filament in a viscous fluid under gravity. In the Stokes limit, the drag forces and torques on the filament are approximated within the resistive-force theory. We develop an analytic approximation to the e xact equations of motion that works well in the limit of a sufficiently large number of turns in the helix (larger than two, typically). For a wide range of initial conditions, our approximation predicts that the centre of the helix itself follows a helical path with the symmetry axis of the trajectory being parallel to the direction of gravity. The radius and the pitch of the trajectory scale as non-trivial powers of the number of turns in the original helix. For the initial conditions corresponding to an almost horizontal orientation of the helix, we predict trajectories that are either attracted towards the horizontal orientation, in which case the helix sediments in a straight line along the direction of gravity, or trajectories that form a helical-like path with many temporal frequencies involved. Our results provide new insight into the sedimentation of chiral objects and might be used to develop new techniques for their spatial separation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا