ترغب بنشر مسار تعليمي؟ اضغط هنا

A bouncing oil droplet in a stratified liquid and its sudden death

64   0   0.0 ( 0 )
 نشر من قبل Yanshen Li
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Droplets can self-propel when immersed in another liquid in which a concentration gradient is present. Here we report the experimental and numerical study of a self-propelling oil droplet in a vertically stratified ethanol/water mixture: At first, the droplet sinks slowly due to gravity, but then, before having reached its density matched position, jumps up suddenly. More remarkably, the droplet bounces repeatedly with an ever increasing jumping distance, until all of a sudden it stops after about 30 min. We identify the Marangoni stress at the droplet/liquid interface as responsible for the jumping: its strength grows exponentially because it pulls down ethanol-rich liquid, which in turn increases its strength even more. The jumping process can repeat because gravity restores the system. Finally, the sudden death of the jumping droplet is also explained. Our findings have demonstrated a type of prominent droplet bouncing inside a continuous medium with no wall or sharp interface.



قيم البحث

اقرأ أيضاً

The transport of small quantities of liquid on a solid surface is inhibited by the resistance to motion caused by the contact between the liquid and the solid. To overcome such resistance, motion can be externally driven through gradients in electric fields, but these all inconveniently involve the input of external energy. Alternatively, gradients in physical shape and wettability - the conical shape of cactus spines to create self-propelled motion. However, such self-propelled motion to date has limited success in overcoming the inherent resistance to motion of the liquid contact with the solid. Here we propose a simple solution in the form of shaped-liquid surface, where solid topographic structures at one length scale provides the base for a smaller length-scale liquid conformal layer. This dual-length scale render possible slippery surfaces with superhydrophobic properties. Combined to an heterogeneous topography, it provides a gradient in liquid-on-liquid wettability with minimal resistance to motion and long range directional self-propelled droplet transport. Moreover, the liquid-liquid contact enables impacting droplets to be captured and transported, even when the substrate is inverted. These design principles are highly beneficial for droplet transport in microfluidics, self-cleaning surfaces, fog harvesting and in heat transfer.
Marangoni instabilities can emerge when a liquid interface is subjected to a concentration or temperature gradient. It is generally believed that for these instabilities bulk effects like buoyancy are negligible as compared to interfacial forces, esp ecially on small scales. Consequently, the effect of a stable stratification on the Marangoni instability has hitherto been ignored. Here we report, for an immiscible drop immersed in a stably stratified ethanol-water mixture, a new type of oscillatory solutal Marangoni instability which is triggered once the stratification has reached a critical value. We experimentally explore the parameter space spanned by the stratification strength and the drop size and theoretically explain the observed crossover from levitating to bouncing by balancing the advection and diffusion around the drop. Finally, the effect of the stable stratification on the Marangoni instability is surprisingly amplified in confined geometries, leading to an earlier onset.
To understand the behavior of composite fluid particles such as nucleated cells and double-emulsions in flow, we study a finite-size particle encapsulated in a deforming droplet under shear flow as a model system. In addition to its concentric partic le-droplet configuration, we numerically explore other eccentric and time-periodic equilibrium solutions, which emerge spontaneously via supercritical pitchfork and Hopf bifurcations. We present the loci of these solutions around the codimenstion-two point. We adopt a dynamical system approach to model and characterize the coupled behavior of the two bifurcations. By exploring the flow fields and hydrodynamic forces in detail, we identify the role of hydrodynamic particle-droplet interaction which gives rise to these bifurcations.
A liquid droplet, immersed into a Newtonian fluid, can be propelled solely by internal flow. In a simple model, this flow is generated by a collection of point forces, which represent externally actuated devices or model autonomous swimmers. We work out the general framework to compute the self-propulsion of the droplet as a function of the actuating forces and their positions within the droplet. A single point force, F with general orientation and position, r_0, gives rise to both, translational and rotational motion of the droplet. We show that the translational mobility is anisotropic and the rotational mobility can be nonmonotonic as a function of | r_0|, depending on the viscosity contrast. Due to the linearity of the Stokes equation, superposition can be used to discuss more complex arrays of point forces. We analyse force dipoles, such as a stresslet, a simple model of a biflagellate swimmer and a rotlet, representing a helical swimmer, driven by an external magnetic field. For a general force distribution with arbitrary high multipole moments the propulsion properties of the droplet depend only on a few low order multipoles: up to the quadrupole for translational and up to a special octopole for rotational motion. The coupled motion of droplet and device is discussed for a few exemplary cases. We show in particular that a biflagellate swimmer, modeled as a stresslet, achieves a steady comoving state, where the position of the device relative to the droplet remains fixed. In fact there are two fixpoints, symmetric with respect to the center of the droplet. A tiny external force selects one of them and allows to switch between forward and backward motion.
The physicochemical hydrodynamics of bubbles and droplets out of equilibrium, in particular with phase transitions, displays surprisingly rich and often counterintuitive phenomena. Here we experimentally and theoretically study the nucleation and ear ly evolution of plasmonic bubbles in a binary liquid consisting of water and ethanol. Remarkably, the submillimeter plasmonic bubble is found to be periodically attracted to and repelled from the nanoparticle-decorated substrate, with frequencies of around a few kHz. We identify the competition between solutal and thermal Marangoni forces as origin of the periodic bouncing. The former arises due to the selective vaporization of ethanol at the substrates side of the bubble, leading to a solutal Marangoni flow towards the hot substrate, which pushes the bubble away. The latter arises due to the temperature gradient across the bubble, leading to a thermal Marangoni flow away from the substrate which sucks the bubble towards it. We study the dependence of the frequency of the bouncing phenomenon from the control parameters of the system, namely the ethanol fraction and the laser power for the plasmonic heating. Our findings can be generalized to boiling and electrolytically or catalytically generated bubbles in multicomponent liquids.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا