ﻻ يوجد ملخص باللغة العربية
In this work we report preliminary results on the relaxational dynamics of one dimensional Bose gases, as described by the Lieb-Liniger model, upon release from a parabolic trap. We explore the effects of integrability and integrability breaking upon these dynamics by placing the gas post-release in an integrability breaking one-body cosine potential of variable amplitude. By studying the post-quench evolution of the conserved charges that would exist in the purely integrable limit, we begin to quantify the effects of the weak breaking of integrability on the long time thermalization of the gas.
We prepare a chemically and thermally one-dimensional (1d) quantum degenerate Bose gas in a single microtrap. We introduce a new interferometric method to distinguish the quasicondensate fraction of the gas from the thermal cloud at finite temperatur
We analyze the two-body momentum correlation function for a uniform weakly interacting one-dimensional Bose gas. We show that the strong positive correlation between opposite momenta, expected in a Bose-Einstein condensate with a true long-range orde
We experimentally study the dynamics of a degenerate one-dimensional Bose gas that is subject to a continuous outcoupling of atoms. Although standard evaporative cooling is rendered ineffective by the absence of thermalizing collisions in this system
We investigate the response of a one-dimensional Bose gas to a slow increase of its interaction strength. We focus on the rich dynamics of equal-time single-particle correlations treating the Lieb-Liniger model within a bosonization approach and the
Quantum integrable models display a rich variety of non-thermal excited states with unusual properties. The most common way to probe them is by performing a quantum quench, i.e., by letting a many-body initial state unitarily evolve with an integrabl