ترغب بنشر مسار تعليمي؟ اضغط هنا

Upper Bound to the Ionization Energy of 85Rb2

47   0   0.0 ( 0 )
 نشر من قبل Michael Bellos Mr.
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report an upper bound to the ionization energy of 85Rb2 of 31348.0(6) cm-1, which also provides a lower bound to the dissociation energy D0 of 85Rb2+ of 6307.5(6) cm-1. These bounds were measured by the onset of autoionization of excited states of 85Rb2 below the 5s+7p atomic limit. We form 85Rb2 molecules via photoassociation of ultracold 85Rb atoms, and subsequently excite the molecules by single-photon ultraviolet transitions to states above the ionization threshold.

قيم البحث

اقرأ أيضاً

114 - Chuan Cheng 2021
We investigate the role of nuclear motion and strong-field-induced electronic couplings during the double ionization of deuterated water using momentum-resolved coincidence spectroscopy. By examining the three-body dicationic dissociation channel, D$ ^{+}$/D$^{+}$/O, for both few- and multi-cycle laser pulses, strong evidence for intra-pulse dynamics is observed. The extracted angle- and energy-resolved double ionization yields are compared to classical trajectory simulations of the dissociation dynamics occurring from different electronic states of the dication. In contrast with measurements of single photon double ionization, pronounced departure from the expectations for vertical ionization is observed, even for pulses as short as 10~fs in duration. We outline numerous mechanisms by which the strong laser field can modify the nuclear wavefunction en-route to final states of the dication where molecular fragmentation occurs. Specifically, we consider the possibility of a coordinate-dependence to the strong-field ionization rate, intermediate nuclear motion in monocation states prior to double ionization, and near-resonant laser-induced dipole couplings in the ion. These results highlight the fact that, for small and light molecules such as D$_2$O, a vertical-transition treatment of the ionization dynamics is not sufficient to reproduce the features seen experimentally in the strong field coincidence double-ionization data.
Polyatomic molecules in strong laser fields can undergo substantial nuclear motion within tens of femtoseconds. Ion imaging methods based on dissociation or Coulomb explosion therefore have difficulty faithfully recording the geometry dependence of t he field ionization that initiates the dissociation process. Here we compare the strong-field double ionization and subsequent dissociation of water (both H$_2$O and D$_2$O) in 10-fs and 40-fs 800-nm laser pulses. We find that 10-fs pulses turn off before substantial internuclear motion occurs, whereas rapid internuclear motion can take place during the double ionization process for 40-fs pulses. The short-pulse measurements are consistent with a simple tunnel ionization picture, whose predictions help interpret the motion observed in the long-pulse measurements.
The combination of photoelectron spectroscopy and ultrafast light sources is on track to set new standards for detailed interrogation of dynamics and reactivity of molecules. A crucial prerequisite for further progress is the ability to not only dete ct the electron kinetic energy, as done in traditional photoelectron spectroscopy, but also the photoelectron angular distributions (PADs) in the molecular frame. Here carbonylsulfide (OCS) and benzonitrile molecules, fixed in space by combined laser and electrostatic fields, are ionized with intense, circularly polarized, 30 femtosecond laser pulses. For 1-dimensionally oriented OCS the molecular frame PADs exhibit pronounced anisotropies, perpendicular to the fixed permanent dipole moment, that are absent in PADs from randomly oriented molecules. For 3-dimensionally oriented benzonitrile additional striking structures appear due to suppression of electron emission in nodal planes of the fixed electronic orbitals. Our theoretical analysis, relying on tunneling ionization theory, shows that the PADs reflect nodal planes, permanent dipole moments and polarizabilities of both the neutral molecule and its cation. The calculated results are exponentially sensitive to changes in these molecular properties thereby pointing to exciting opportunities for time-resolved probing of valence electrons dynamics by intense circularly polarized pulses. Molecular frame PADs from oriented molecules will prove important in other contexts notably in emerging free-electron-laser studies where localized inner shell electrons are knocked off by x-ray pulses.
We present an experimental and theoretical energy- and angle-resolved study on the photoionization dynamics of non-resonant one-color two-photon single valence ionization of neutral N$_2$ molecules. Using 9.3 eV photons produced via high harmonic gen eration and a 3-D momentum imaging spectrometer, we detect the photoelectrons and ions produced from one-color two-photon ionization in coincidence. Photoionization of N$_2$ populates the X $^2Sigma^+_g$, A $^2Pi_u$, and B $^2Sigma^+_u$ ionic states of N$_2^+$, where the photoelectron angular distributions associated with the X $^2Sigma^+_g$ and A $^2Pi_u$ states both vary with changes in photoelectron kinetic energy of only a few hundred meV. We attribute the rapid evolution in the photoelectron angular distributions to the excitation and decay of dipole-forbidden autoionizing resonances that belong to series of different symmetries, all of which are members of the Hopfield series, and compete with the direct two-photon single ionization.
This work is aimed at the multi-configuration Hartree-Fock calculations of the 6s ionization energies of lanthanides with configurations [Xe]4f^{N}6s^{2}. Authors have used the ATSP MCHF version in which there are new codes for calculation of spin-an gular parts of matrix elements of the operators of intraatomic interactions written on the basis of the methodology Gaigalas, Rudzikas and Froese Fischer, based on the second quantization in coupled tensorial form, the angular momentum theory in 3 spaces (orbital, spin and quasispin), graphical technique of spin-angular integrations and reduced coefficients (subcoefficients) of fractional parentage. This methodology allows us to study the configurations with open f-shells without any restrictions, thus providing the possibility to investigate heavy atoms and ions as well as to obtain reasonably accurate values of spectroscopic data for such complex many-electron systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا