ﻻ يوجد ملخص باللغة العربية
The contribution of the R-parity violating trilinear couplings in the supersymmetric model to the fermion electric dipole moment is analyzed at the two-loop level. We show that in general, the Barr-Zee type contribution to the fermion electric dipole moment with the exchange of W and Z bosons is not small compared to the currently known photon exchange one with R-parity violating interactions. We will then give new upper bounds on the imaginary parts of R-parity violating couplings from the experimental data of the electric dipole moments of the electron and of the neutron. The effect due to bilinear R-parity violating couplings, which needs to be investigated separately, is not included in our analyses.
The contributions of a second Higgs doublet to the electron electric dipole moment near the heavy Higgs decoupling limit are determined within an effective field theory framework. In models that satisfy the Glashow-Weinberg condition, the leading con
We extend the Zee model, where tiny neutrino masses are generated at the one loop level, to a supersymmetric model with R-parity conservation. It is found that the neutrino mass matrix can be consistent with the neutrino oscillation data thanks to th
Considering the CP violating phases, we analyze the neutron electric dipole moment (EDM) in a CP violating supersymmetric extension of the standard model where baryon and lepton numbers are local gauge symmetries(BLMSSM). The contributions from the o
We discuss the effect of CP violation in the aligned scenario of the general two-Higgs-doublet model, in which the Higgs potential and the Yukawa interaction provide additional CP-violating phases. An alignment is imposed to the Yukawa interaction in
Neutron electric dipole moment (EDM) due to single quark EDM and to the transition EDM is calculated in the minimal supersymmetric standard model. Assuming that the Cabibbo-Kobayashi-Maskawa matrix at the grand unification scale is the only source of