ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutron electric dipole moment in CP violating BLMSSM

255   0   0.0 ( 0 )
 نشر من قبل Zhao Shumin
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Considering the CP violating phases, we analyze the neutron electric dipole moment (EDM) in a CP violating supersymmetric extension of the standard model where baryon and lepton numbers are local gauge symmetries(BLMSSM). The contributions from the one loop diagrams and the Weinberg operators are taken into account. Adopting some assumptions on the relevant parameter space, we give the numerical results analysis. The numerical results for neutron EDM can reach $1.05times 10^{-25}(e.cm)$, which is about the experimental upper limit.



قيم البحث

اقرأ أيضاً

Nonstandard CP violation in the Higgs sector can play an essential role in electroweak baryogenesis. We calculate the full two-loop matching conditions of the standard model, with Higgs Yukawa couplings to light quarks modified to include arbitrary C P-violating phases, onto an effective Lagrangian comprising CP-odd electric and chromoelectric light-quark (up, down, and strange) dipole operators. We find large isospin-breaking contributions of the electroweak diagrams. Using these results, we obtain significant constraints on the phases of the light-quark Yukawas from experimental bounds on the neutron and mercury electric dipole moments.
We discuss the effect of CP violation in the aligned scenario of the general two-Higgs-doublet model, in which the Higgs potential and the Yukawa interaction provide additional CP-violating phases. An alignment is imposed to the Yukawa interaction in order to avoid dangerous flavor changing neutral currents. The Higgs potential is also aligned such that the coupling constants of the lightest Higgs boson, which is identified as the discovered Higgs boson with the mass of 125 GeV, are the same as those of the standard model. In general, CP-violating phases originated by the Yukawa interaction and the Higgs potential are strongly constrained by the current data for the electric dipole moment (EDM). It is found that in our scenario contributions from the two sources of CP violation can be destructive and consequently their total contribution can satisfy the EDM results, even when each CP-violating phase is large. Such a large CP-violating phase can be tested at collider experiments by looking at the angular distributions of particles generated by the decays of the additional Higgs bosons.
The connection between a regularization-independent symmetric momentum substraction (RI-$tilde{rm S}$MOM) and the $overline{rm MS}$ scheme for the quark chromo EDM operators is discussed. A method for evaluating the neutron EDM from quark chromoEDM i s described. A preliminary study of the signal in the matrix element using clover quarks on a highly improved staggered quark (HISQ) ensemble is shown.
Electric dipole moments are sensitive probes of new phases in the Higgs Yukawa couplings. We calculate the complete two-loop QCD anomalous dimension matrix for the mixing of CP-odd scalar and tensor operators and apply our results for a phenomenologi cal study of CP violation in the bottom and charm Yukawa couplings. We find large shifts of the induced Wilson coefficients at next-to-leading-logarithmic order. Using the experimental bound on the electric dipole moment of the neutron, we update the constraints on CP-violating phases in the bottom and charm quark Yukawas.
Using the present upper bound on the neutron electric dipole moment, we give an estimate for the upper limit of the CP-violating couplings of the eta(eta) to the nucleon. Using this result, we then derive constraints on the CP-violating eta(eta)-pi-p i couplings, which define the two-pion CP-violating decays of the eta and eta mesons. Our results are relevant for the running and planned measurements of rare decays of the eta and eta mesons by the GlueX Collaboration at JLab and the LHCb Collaboration at CERN.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا