ترغب بنشر مسار تعليمي؟ اضغط هنا

A numerical technique for preserving the topology of polymer knots: The case of short-range attractive interactions

64   0   0.0 ( 0 )
 نشر من قبل Franco Ferrari
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The statistical mechanics of single polymer knots is studied using Monte Carlo simulations. The polymers are considered on a cubic lattice and their conformations are randomly changed with the help of pivot transformations. After each transformation, it is checked if the topology of the knot is preserved by means of a method called pivot algorithm and excluded area (in short PAEA) and described in a previous publication of the authors. As an application of this method the specific energy, the radius of gyration and heat capacity of a few types of knots are computed. The case of attractive short-range forces is investigated. The sampling of the energy states is performed by means of the Wang-Landau algorithm. The obtained results show that the specific energy and heat capacity increase with increasing knot complexity as in the case of repulsive interactions. The data about the gyration radius allow to estimate the size of the polymer knots at different temperatures.

قيم البحث

اقرأ أيضاً

Using Langevin dynamics simulations, we investigate the influence of polymer-pore interactions on the dynamics of biopolymer translocation through nanopores. We find that an attractive interaction can significantly change the translocation dynamics. This can be understood by examining the three components of the total translocation time $tau approx tau_1+tau_2+tau_3$ corresponding to the initial filling of the pore, transfer of polymer from the textit{cis} side to the textit{trans} side, and emptying of the pore, respectively. We find that the dynamics for the last process of emptying of the pore changes from non-activated to activated in nature as the strength of the attractive interaction increases, and $tau_3$ becomes the dominant contribution to the total translocation time for strong attraction. This leads to a new dependence of $tau$ as a function of driving force and chain length. Our results are in good agreement with recent experimental findings, and provide a possible explanation for the different scaling behavior observed in solid state nanopores {it vs.} that for the natural $alpha$-hemolysin channel.
The aggregation of attractive colloids has been extensively studied from both theoretical and experimental perspectives as the fraction of solid particles is changed, and the range, type and strength of attractive or repulsive forces between particle s varies. The resulting gels consisting of disordered assemblies of attractive colloidal particles, have also been investigated with regards to percolation, phase separation, and the mechanical characteristics of the resulting fractal networks. Despite tremendous progress in our understanding of the gelation process, and the exploration of different routes for arresting the dynamics of attractive colloids, the complex interplay between convective transport processes and many-body effects in such systems has limited our ability to drive the system towards a specific configuration. Here we study a model attractive colloidal system over a wide range of particle characteristics and flow conditions undergoing aggregation far from equilibrium. The complex multiscale dynamics of the system can be understood using a Time-Rate-Transformation diagram adapted from understanding of materials processing in block copolymers, supercooled liquids and much stiffer glassy metals to direct targeted assembly of attractive colloidal particles.
We study the driven translocation of polymers under time-dependent driving forces using $N$-particle Langevin dynamics simulations. We consider the force to be either sinusoidally oscillating in time or dichotomic noise with exponential correlation t ime, to mimic both plausible experimental setups and naturally occurring biological conditions. In addition, we consider both the case of purely repulsive polymer-pore interactions and the case with additional attractive polymer-pore interactions, typically occurring inside biological pores. We find that the nature of the interaction fundamentally affects the translocation dynamics. For the non-attractive pore, the translocation time crosses over to a fast translocation regime as the frequency of the driving force decreases. In the attractive pore case, because of a free energy well induced inside the pore, the translocation time can be a minimum at the optimal frequency of the force, the so-called resonant activation. In the latter case, we examine the effect of various physical parameters on the resonant activation, and explain our observations using simple theoretical arguments.
Extensive molecular dynamics simulations show that a short-range central potential, suited to model C60, undergoes a high temperature transition to a glassy phase characterized by the positional disorder of the constituent particles. Crystallization, melting and sublimation, which also take place during the simulation runs, are illustrated in detail. It turns out that vitrification and the mentioned phase transitions occur when the packing fraction of the system - defined in terms of an effective hard-core diameter - equals that of hard spheres at their own glass and melting transition, respectively. A close analogy also emerges between our findings and recent mode coupling theory calculations of structural arrest lines in a similar model of protein solutions. We argue that the conclusions of the present study might hold for a wide class of potentials currently employed to mimic interactions in complex fluids (some of which of biological interest), suggesting how to achieve at least qualitative predictions of vitrification and crystallization in those systems.
99 - Diego Delbiondo 2013
We present a numerical study of the slip link model introduced by Likhtman for describing the dy- namics of dense polymer melts. After reviewing the technical aspects associated with the implemen- tation of the model, we extend previous work in sever al directions. The dependence of the relaxation modulus with the slip link density and the slip link stiffness is reported. Then the nonlinear rheolog- ical properties of the model, for a particular set of parameters, are explored. Finally, we introduce excluded volume interactions in a mean field such as manner in order to describe inhomogeneous systems, and we apply this description to a simple nanocomposite model. With this extension, the slip link model appears as a simple and generic model of a polymer melt, that can be used as an alternative to molecular dynamics for coarse grained simulations of complex polymeric systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا