ﻻ يوجد ملخص باللغة العربية
We present a detailed study of the electroluminescence of intersubband devices operating in the light-matter strong coupling regime. The devices have been characterized by performing angle resolved spectroscopy that shows two distinct light intensity spots in the momentum-energy phase diagram. These two features of the electroluminescence spectra are associated with photons emitted from the lower polariton branch and from the weak coupling of the intersubband transition with an excited cavity mode. The same electroluminescent active region has been processed into devices with and without the optical microcavity to illustrate the difference between a device operating in the strong and weak coupling regime. The spectra are very well simulated as the product of the polariton optical density of states, and a function describing the energy window in which the polariton states are populated. The voltage evolution of the spectra shows that the strong coupling regime allows the observation of the electroluminescence at energies otherwise inaccessible.
The generation and control of exotic phenomena in organic electroluminescent microcavities, such as polariton lasing and non-linear optical effects, operating in strong and ultra-strong coupling regimes, is still a great challenge. The main obstacles
The optical properties of transition metal dichalcogenide monolayers are widely dominated by excitons, Coulomb-bound electron-hole pairs. These quasi-particles exhibit giant oscillator strength and give rise to narrow-band, well-pronounced optical tr
It is well known that optical absorption saturation of intersubband transitions in doped semiconductor quantum wells is independent of the introduced doping in the absence of a cavity. When inserting the system in a resonator, we show that this remai
Exciton condensation in an electron-hole bilayer system of monolayer transition metal dichalcogenides is analyzed at three different levels of theory to account for screening and quasiparticle renormalization. The large effective masses of the transi
The optical response of a heavily doped quantum well, with two occupied subbands, has been investigated as a function of the electronic density. It is shown that the two optically active transitions are mutually coupled by dipole-dipole Coulomb inter